Что в центре нашей галактики – все о космосе

Место Земли в галактике, и наши ближайшие звездные соседи – Звездный каталог. Наша планета и то, что вокруг неё

Что в центре нашей галактики - все о космосе

Звездный каталог » Основы астрономии » Место Земли в галактике, и наши ближайшие звездные соседи

Место Земли в галактике, и наши ближайшие звездные соседи

  • Рубрика: Основы астрономии
  • звезды, Земля, созвездия

Как выглядят со стороны другие звезды и даже галактики мы уже говорил, а как видел бы нашу солнечную систему и нашу звезду-Солнце, сторонний наблюдатель?

Судя по анализу окружающего космического пространства, Солнечная система в настоящее время движется через местное межзвездное облако, состоящее в основном из водорода и некоторой доли гелия. Предполагается, что это местное межзвездное облако раскинулось на расстоянии в 30 световых лет, что в пересчете на километры, составляет что-то около 180 млн. км.

В свою очередь, «наше»  облако  находится внутри вытянутого газового облака, так называемого местного пузыря, образованного частицами древних сверхновых звезд. Пузырь растянут на 300 световых лет и находится на внутреннем крае одного из спиральных рукавов Млечного пути.

Предполагаемый вид галактики Млечный путь и место, занимаемое в нем Солнечной системой

Впрочем, как уже говорилось мною ранее, наше точное положение  относительно рукавов Млечного пути нам неизвестно — как не крути, у нас просто нет возможности посмотреть на него со стороны и оценить ситуацию.

Что поделать: если практически в любом месте планеты вы можете определить ваше местоположение с достаточной точностью, то, если вы имеете дело с галактическими масштабами, это невозможно — наша галактика имеет 100 тыс. световых лет в поперечнике. Даже при изучении космического пространства вокруг нас многое остается неясно.

Если мы воспользуемся системой межгалактического позиционирования, мы вероятно обнаружим себя между верхней и нижней частью Млечного пути и на полпути между центром и внешним краем галактики. Согласно одной из гипотез мы поселились в довольно «престижном районе» галактики.

Существует предположение, что звезды, находящиеся на определенном расстоянии от центра галактики, находятся в так называемой обитаемой зоне, то есть там, где теоретически возможна жизнь.

А жизнь возможна лишь в правильном месте с правильной температурой — на планете, расположенной на таком расстоянии от звезды, чтобы на ней жидкая вода. Только тогда жизнь сможет появиться и эволюционировать. В целом обитаемая зона простирается на 13 – 35 тыс. лет от центра Млечного пути.

Учитывая, что наша солнечная система находится в 20 – 29 световых годах от ядра галактики, мы как раз посередине «жизненного оптимума».

Впрочем, в настоящее время Солнечная система действительно является очень спокойным «районом» космоса. Планеты системы давно сформировались, «блуждающие» планеты либо разбились о соседей, либо сгинули за пределами нашего звездного дома, да и количество астероидов и метеоритов значительно снизилось по сравнению с тем хаосом, что царил вокруг 4 миллиарда лет назад.

Мы считаем, что ранние звезды формировались только из водорода и гелия. Но так как звезды – это своего рода ядерные реакторы, с течением времени образовались более тяжелые элементы.

Это крайне важно, потому что, когда звезды умирают и взрываются, образуется сверхновые. Их остатки становятся строительным материалом для более тяжелых элементов и своеобразными семенами галактики.

Откуда бы иначе им взяться, как не из «кузнецы химических элементов» находящейся в недрах звезд?

Вот, для примера, углерод в наших клетках, кислород в наших легких, кальций в наших костях, железо в нашей крови – все это те самые тяжелые элементы.

В необитаемой зоне, по-видимому, отсутствовали те процессы, которые сделали возможным возникновение жизни на Земле.

Ближе к краю галактики взорвалось меньше массивных звезд, следовательно, было выброшено меньше тяжелых элементов. Дальше в галактике вы не найдете атомов таких важных для жизни элементов как кислород, углерод, азот.

Обитаемая зона характеризуется наличием этих более тяжелых атомов и за ее границами жизнь попросту невозможна.

Если крайняя часть галактики – «плохой район», то ее центральная часть еще хуже. И чем ближе к галактическому ядру, тем опаснее. Во времена Коперника, мы считали, что находимся в центре Вселенной. Похоже, после всего, что мы узнали о небесах, мы решили, что находимся в центре галактики. Теперь, когда нам известно еще больше, мы понимаем, как нам повезло оказаться не в центре.

«Радиоисточник Стрелец А», зафиксированный ещё в 1960-х г.г., скорее всего является «черной дырой» в центре нашей галактики

В самом центре Млечного пути находится объект огромной массы – Стрелец А, черная дыра около 14 млн. км в поперечнике, ее масса в 3700 раз больше массы нашего Солнца.

Черная дыра, находящаяся в центре галактики, выделяет мощное радиоизлучение, достаточное для того, чтобы испепелить все известные формы жизни. Так, что приблизится к ней невозможно.

Есть и другие регионы галактики, которые непригодны для жизни. Например, из-за сильнейшего излучения звезд типа О.

Звезды О-типа – это гиганты значительно горячее Солнца, больше его в 10 – 15 раз и выбрасывающие в космос колоссальные дозы ультрафиолетового излучения. Под лучами такой звезды гибнет все.

Такие звезды способны разрушить планеты еще до того, как они закончат формироваться.

Излучение от них столь велико, что просто сдирает материю с формирующихся планет и планетарных систем, и буквально срывает планеты с орбит.

Звезды O-типа, это самые настоящие «звезды смерти». Никакая жизнь невозможна в радиусе 10 и больше световых лет от них.

Так что наш уголок галактики – как цветущий сад между пустыней и океаном.  У нас есть все необходимые для жизни элементы.  На нашем участке главным барьером против космических лучей служит магнитное поле Солнце, а против радиации от Солнца нас защищает магнитное поле Земли.

 Магнитное поле Солнца отвечает за  солнечный ветер, который является защитой от тех неприятностей, которые приходят к нам с края Солнечной системы.

  Магнитное поле Солнце раскручивает солнечный ветер, представляющий из себя заряженные потоки протонов и электронов, выстреливающих из Солнца со скоростью миллион км в час.

Солнечный ветер несет магнитное поле на расстояние в три раза превышающее орбиту Нептуна. Но миллиард километров спустя в месте, называемом  гелиопаузой, солнечный ветер иссякает и почти исчезает. Замедлившись, он перестает быть барьером для космических лучей межзвездного пространства. Это место является границей гелиосферы.

Если бы не было гелиосферы, космические лучи беспрепятственно проникали бы в нашу Солнечную систему. Гелиосфера работает, как клетка для погружения с акулами, только вместо акул здесь радиация, а вместо аквалангиста – наша планета.

Некоторые из космических лучей все же проникают через барьер. Но теряют при этом большую часть своей силы. Раньше мы считали, что гелиосфера – это такой изящный барьер, что-то вроде складчатого занавеса из магнитного поля. До тех пор, пока не были получены данные с Вояджера 1 и Вояджера 2, запущенных в 1997 году.

В начале 21 века были обработаны данные с аппаратов. Оказалось, что магнитное поле на границе гелиосферы представляет собой что-то вроде магнитной пены, каждый пузырек которой составляет около 100 млн. км в ширину. Мы привыкли думать, что поверхность поля сплошная, создающая надежный барьер.

Но, как выяснилось, оно состоит из пузырьков и узоров.

Когда мы исследуем наши галактические окрестности, нам мешает пыль и газ, чтобы рассмотреть объекты более детально. За долгую историю наблюдений мы выяснили следующее.

Когда мы исследуем ночное небо невооруженным глазом или с помощью телескопа, мы видим многое в видимой части спектра. Но это лишь часть того, что там есть на самом деле.

Некоторые телескопы могут видеть через космическую пыль благодаря функции инфракрасного видения.

Звезды очень горячи, но скрываются в оболочках из пыли. А в инфракрасный телескоп мы можем их наблюдать.

Объекты могут быть прозрачными или непрозрачными, все зависит от световых волн, то есть света, который либо может, либо не может через них пройти.

Читайте также:  Шаровое скопление m107 - все о космосе

Если что-то вроде газа или космической пыли становится между объектом наблюдения и телескопом, можно переместиться в другую часть спектра, где световые волны будут иметь другую частоту. В таком случае это препятствие может стать видимым.

Вооружившись инфракрасными и другими приспособлениями, мы обнаружили вокруг себя множество космических соседей, о существовании которых не подозревали. Существует ряд приборов для наблюдения за космическими телами, звездами в разных частях спектра.

Обнаружив множество новых космических тел вокруг нас, мы задумываемся как они ведут себя, как они повлияли на Землю в момент зарождения жизни на Земле.

  Некоторые из них – «хорошие соседи», то есть ведут себя предсказуемо, движутся по предсказуемой траектории. «Плохие соседи» — непредсказуемые.

Это может быть взрыв умирающей звезды или столкновение, осколки от которого полетят в нашу сторону.

Некоторые из наших соседей могли в древности принести нам «подарок», который изменил все. Когда наша Земля заканчивала формировать и остывала, поверхность была все еще очень горячей. А так как вода попросту испарилась, вновь она могла быть принесена на Землю многочисленными кометами или астероидами. Существует множество теорий о том, как мы могли получить воду.

Согласно одной из них, воду могли принести ледяные тела, пришедшие в Солнечную систему извне или оставшиеся после формирования Солнца и планет. Согласно одной из последних теорий около 4 млн.

лет назад гравитация тяжелого газового гиганта Юпитера направила ледяные астероиды в сторону Марса, Земли и Венеры. Но только на Земле лед смог проникнуть в мантию.

Вода размягчила Землю и инициировала процесс тектоники плит, вследствие чего появились континенты и океаны.

А каким образом в океанах зародилась жизнь?  Может быть, необходимы органические соединения попали в них из космоса? В некоторых метеоритах, которые называют углекислые хандриты, ученые обнаружили органические соединения, которые могли способствовать развитию жизни на Земле. Эти соединения похожи на те, которые были собраны из антарктических метеоритов, образцов межзвездной пыли и фрагментов комет, полученных НАСА из звездной пыли в 2005 году.

Происхождение жизни – это длинная цепь реакций органических соединений.

Все органические соединения содержат углерод и вполне возможно, что различные обстоятельства привели к тому, что образовались различные органические соединения.

Одни могли образовать здесь, на планете, а другие в космосе. Вполне возможно, что без этих межгалагтических подарков от наших соседей жизнь на Земле так бы и не появилась.

Но есть и непредсказуемые соседи. Например, звезда — оранжевый карлик Глизе 710. Эта звезда на 60% массивнее Солнца, в настоящее время всего в 63 световых годах от Земли и продолжает приближаться к Солнечной системе.

Облако Оорта — громадная сфера из замороженных камней и глыб льда, окружающая Солнечную систему (в центре). Источник комет и блуждающих метеоритов «из вне» нашей системы

Также на расстоянии 1 светового года от Земли находится так называемое облако Оорта. Мы можем наблюдать кометы из облака Оорта, если они проходят достаточно близко к Солнцу, но обычно так не бывает и мы их не видим.

Есть же и просто «странные соседи». Один из них (вернее, целая семья) это звезды созвездия Центавра.

Звезда Альфа Центавра, самая яркую звезду в созвездии Центавра, для нас третья по яркости звезда ночного неба. Она – ближайшая наша соседка, находится в 4 световых годах от нас. До 20-го века считалось, что это двойная звезда, но позже выяснилось, что мы наблюдаем ни что иное, как звездную систему из обращающихся вокруг друг друга сразу трех звезд!

Альфа Центавра А очень похожа на наше Солнце,  и масса у неё такая же. Альфа Центавра Б немного меньше, а третья звезда Проксима Центравра является звездой типа М, масса которой составляет около 12% массы Солнца. Она так мала, что мы не можем наблюдать ее невооруженным взглядом.

Оказывается, многие другие наши звезды-соседи также имеют несколько систем. Сириус, находящийся на расстоянии около 8,5 световых лет, известный как одна из самых ярких звезд на небе, тоже является двойной звездой. Большинство звезд меньше нашего Солнца и часто являются двойными. Так что наше Солнце-одиночка – скорее исключение из правил.

Большинство звезд вокруг – это красные или коричневые карлики. Красные карлики составляют до 70% всех звезд не только в нашей галактике, но и во Вселенной. Мы привыкли к нашему Солнцу, оно кажется нам эталоном, но красных карликов гораздо больше.

Мы не были уверены есть ли среди наших соседей коричневые карлики до 1990 года. Эти космические объекты также уникальны — не совсем звезды, но и не планеты, да и цвет у них совсем не коричневых.

Коричневые карлики – одни из самых загадочных обитателей нашей Солнечной системы, поскольку они действительно очень холодные и очень темные. Они излучают мало света, поэтому их крайне трудно наблюдать.

В 2011 году один из телескопов НАСА, широкоугольный исследователь в инфракрасных лучах, где-то на расстоянии 9 – 40 световых лет от Земли обнаружил множество коричневых карликов с такой температурой поверхности, которая когда-то считалась невозможной.

Некоторые из этих коричневых карликов настолько прохладны, что их можно даже потрогать. Температура их поверхности всего 26°С. Звезды комнатной температуры — чего только не увидишь во вселенной!

Однако снаружи нашего «местного пузыря» есть не только звезды, но и планеты, а точнее экзопланет — то есть обращающихся не вокруг Солнца. Открытие такие планет — чрезвычайно сложное событий.

 Это все равно, что наблюдать за одной единственной лампочкой в ночном Лас Вегасе! Фактически, мы даже не видим этих планет, а только догадываемся о них, когда Телескоп Кеплера отслеживающий изменение яркости звезд, фиксирует ничтожное изменение блеска звезды, когда одна из экзопленет, проходит по её диску.

Насколько нам известно, наш ближайший экзопланетарный сосед находится буквально «на одной» улице с нами, «всего» в 10 световых годах, на орбите оранжевой звезды Эпсилон Эридана.

Однако экзопланета похожа скорее не на Землю, а на Юпитер, так как является огромным газовым гигантом.

Впрочем, учитывая, что с момента первых открытий экзопланет прошло меньше двух десятков лет, как знать, что ждет нас дальше.

В 2011 году в нашем районе астрономы обнаружили новый вид планет – бездомные планеты. Оказывается, существуют планеты, которые не вращаются вокруг своей родительской звезды.

Они начали свою жизнь, как и все остальные планеты, но в силу тех или иных причин были смещены со своей орбиты, покинули свои солнечные системы и теперь бесцельно блуждают по галактике без возможности вернуться домой.

Это удивительно, но потребуется новое определения для названия подобного рода планет, для планет, существующих вне притяжения своих родительских звезд.

Впрочем, на горизонте маячит и пара событий, которые могут стать настоящей сенсацией даже в масштабах космоса.

Список источников литературы

Связанные материалы:

Источник: http://starcatalog.ru/osnovyi-astronomii/mesto-zemli-v-galaktike-i-nashi-blizhayshie-zvezdnyie-sosedi.html

Что находится в центре нашей галактики

Галактический центр — сравнительно небольшая область в центре нашей Галактики, радиус которой составляет около 1000 парсек и свойства которой резко отличаются от свойств других её частей.

Образно говоря, галактический центр — это космическая «лаборатория», в которой и сейчас происходят процессы звёздообразования и в которой расположено ядро, когда-то давшее начало конденсации нашей звёздной системы.

Галактический центр находится на расстоянии 8,5 кпк от нашей Солнечной системы, в направлении созвездия Стрельца. В галактической плоскости сосредоточено большое количество межзвёздной пыли, благодаря которой свет, идущий от галактического центра, ослабляется на 30 звёздных величин, то есть в 1012 раз.

Поэтому центр невидим в оптическом диапазоне — невооружённым глазом и при помощи оптических телескопов. Галактический центр наблюдается в радиодиапазоне, а также в диапазонах инфракрасных, рентгеновских и гамма-лучей. Первое изображение ядра Галактики было получено в конце 1940-х гг. А. А. Калиняком, В. И. Красовским и В. Б. Никоновым в инфракрасном диапазоне спектра.

Самой крупной особенностью галактического центра является находящееся там звёздное скопление (звёздный балдж) в форме эллипсоида вращения, большая полуось которого лежит в плоскости Галактики, а малая — на её оси. Балдж (от англ. bulge — «вздутие») — внутренний, яркий сфероидальный компонент спиральных галактик. Размер его колеблется от сотен парсек до нескольких килопарсек.

Читайте также:  Время жизни звезд - все о космосе

Балдж галактики состоит в основном из старых звёзд, движущихся по вытянутым орбитам.

Отношение полуосей равно примерно 0,4. Орбитальная скорость звёзд на расстоянии около килопарсека составляет примерно 270 км/с, а период обращения — около 24 млн лет. Исходя из этого получается, что масса центрального скопления составляет примерно 10 млрд масс Солнца. Концентрация звёзд скопления резко увеличивается к центру.

Звёздная плотность изменяется примерно пропорционально R−1,8 (R — расстояние от центра). На расстоянии около килопарсека она составляет несколько солнечных масс в кубическом парсеке, в центре — более 300 тыс. солнечных масс в кубическом парсеке (для сравнения, в окрестностях Солнца звёздная плотность составляет около 0,07 солнечных масс на кубический парсек).

От скопления отходят спиральные газовые рукава, простирающиеся на расстояние до 3 — 4,5 тыс. парсек. Рукава вращаются вокруг галактического центра и одновременно удаляются в стороны, с радиальной скоростью около 50 км/с. Кинетическая энергия движения составляет 1055 эрг.Внутри скопления обнаружен газовый диск радиусом около 700 парсек и массой около ста миллионов масс Солнца.

Внутри диска находится центральная область звёздообразования.Ближе к центру находится вращающееся и расширяющееся кольцо из молекулярного водорода, масса которого составляет около ста тысяч масс Солнца, а радиус — около 150 парсек. Скорость вращения кольца составляет 50 км/с, а скорость расширения — 140 км/с. Плоскость вращения наклонена к плоскости Галактики на 10 градусов.

По всей вероятности, радиальные движения в галактическом центре объясняются взрывом, произошедшим там около 12 млрд лет назад.Распределение газа в кольце — неравномерное, образующее огромные газопылевые облака. Крупнейшим облаком является комплекс Стрелец B2, находящийся на расстоянии 120 пк от центра. Диаметр комплекса составляет 30 парсек, а масса — около 3 млн масс Солнца.

Комплекс является крупнейшей областью звёздообразования в Галактике. В этих облаках обнаружены все виды молекулярных соединений, встречающихся в космосе.Ещё ближе к центру находится центральное пылевое облако, радиусом около 15 парсек.

В этом облаке периодически наблюдаются вспышки излучения, природа которых неизвестна, но которые свидетельствуют о происходящих там активных процессах.

Практически в самом центре находится компактный источник нетеплового излучения Стрелец A*, радиус которого составляет 0,0001 парсек (около 20,6 а. е.), а яркостная температура — около 10 млн градусов.

Радиоизлучение этого источника, по-видимому, имеет синхротронную природу. Временами наблюдаются быстрые изменения потока излучения. Нигде в другом месте Галактики подобных источников излучения не обнаружено, зато подобные источники имеются в ядрах других галактик.

С точки зрения моделей эволюции галактик, их ядра являются центрами их конденсации и начального звёздообразования. Там должны находиться самые старые звёзды.

По всей видимости, в самом центре ядра Галактики находится сверхмассивная чёрная дыра массой около 3,7 миллионов масс Солнца, что показано исследованием орбит близлежащих звёзд.

Излучение источника Стрелец А* вызвано аккрецией газа на чёрную дыру, радиус излучающей области (аккреционный диск, джеты) не более 45 а. е..

Источник: http://cosmoss1.blogspot.com/2015/06/blog-post_21.html

Тайны Вселенной, которые удалось разгадать только в 21 веке

Раньше ученые считали, что наша планета имеет плоскую форму и стоит на трех китах. Немного позже им удалось доказать, что она имеет эллипсоидную форму, а еще позже – открыть Солнечную систему и все планеты, содержащиеся в ней.

Постепенно знания человечества о космосе разрастались. Ученые получили более реалистичное представление о Вселенной, продолжали осваивать новые космические горизонты. По сей день мы не можем ответить на все вопросы касательно Вселенной.

Некоторые ее тайны нам удалось разгадать только в нынешнем столетии. Именно о них мы поговорим ниже.

Что за странный объект располагается в центре нашей галактики

Объект «G2» – необъяснимое тело, размещенное в центральной части нашего «Млечного пути». На протяжении нескольких десятилетий ученые не могли разгадать, чем оно является. Изначально они считали, что «G2» – это водородное облако, медленно двигающееся в сторону нашей черной дыры.

Насторожило ученых то, что после входа в гравитационное поле этой дыры «G2» начало вести себя странно, не свойственно облаку. Если бы «G2» было облаком, оно бы взорвалось возле черной дыры, заметно изменив ее структуру.

Вместо этого вышеописанный объект остался в гравитационном поле дыры целым и невредимым, и даже продолжил вращаться вокруг нее.

Тайну «G2» удалось разгадать команде астрономов из Калифорнии, которые работали с современной обсерваторией имени Кека. Оказалось, что «G2» представляет собой гигантскую звезду, окруженную облаком из газа и космической пыли.

Эта звезда, по предположению астрономов, образовалась после столкновения пары аналогичных объектов бинарного типа. Кроме этого, ученые считают, что возле «G2» имеются и другие похожие объекты, сформированные черной дырой.

Если быть точнее, то именно поле гравитации данной дыры привело к столкновению бинарных объектов, которые потом сформировали тело «G2» и другие аналогичные.

Каким составом обладают ближайшие «карликовые галактики»

Наша галактика состоит в определенной галактической группе, в которой она является самой крупной. Ее окружают аналогичные объекты меньшего размера, названные «карликовыми галактиками».

Форма этих карликов сфероидальная. Больше о них ничего не было известно до нынешнего года.

Эти «мини-галактики», как оказалось, обладают предостаточным количеством водорода для создания звезд, но далеко не все.

Благодаря сверхмощным телескопам ученые определили, что только максимально отдаленные от нашего «Млечного пути» «мини-галактики» могут формировать звезды.

Приближенные к нам объекты водород нейтрального типа практически не содержат. Оказалось, что в этом виновата наша галактическая система.

Ее окружает плазменное горячее поле, которое «высасывает» водород из «галактик-карликов», расположенных возле нас, оставляя их совершенно нефункциональными.

Сколько темной материи на самом деле

Модель «Лямбда-CDM» демонстрирует, что наши астрономы должны видеть с Земли несколько самых близких к нам галактик, но этого в реальности не происходит. К слову, данные галактики должны быть крупными настолько, чтобы рассмотреть их можно было невооруженным глазом. Почему мы их не видим?

В этом решил разобраться астрофизик П.Кафле из ун. Западной Австралии. Он решил попытаться измерить количество черной материи в нашей галактической системе, после чего выдвинул свое предположение:

Немного позже эксперименты Кафле продемонстрировали, что в нашей галактической системе темной энергии вполовину меньше, чем мы думали до этого. Таким образом, вставив в модель «Лямбда-CDM» свои расчеты, Кафле выяснил, сколько галактик мы должны видеть невооруженным глазом на самом деле.

Оказалось, что их всего три, что и происходит ныне. Поверить в это сложно, но мы действительно можем наблюдать три спутниковые галактики, сильно приближенные к нашему «Млечному пути», но вот понять, что это именно галактики, без специального оборудования мы, увы, не можем.

Названия данных галактик: Большое и Малое Магеллановы облака, «галактика-карлик» Стрельца.

Какие процессы происходят внутри взрывающейся звезды

В декабре 2013 года астрономы смогли наконец-то увидеть, как преображается обычная звезда во взрывающуюся. Благодаря этому им удалось раскрыть загадку гамма-излучений – энергетических всплесков невероятной мощности.

Читайте также:  Фазы луны в июне 2018 года - все о космосе

«Новая» возникает после того, как на нее попадает газ соседа, которым является зачастую «белый карлик». Такие пары называются бинарными. После этого звезда взрывается, выплескивая газ с сумасшедшей скоростью на приличное расстояние. В некоторых ситуациях «Новая» формирует новую звезду, но это невозможно предсказать, как и сам взрыв.

Выпущенный газ начинает перемещаться вдоль орбитальной плоскости космических тел. Немного позже еще более быстрые частицы «белого карлика» догоняют это вещество и сталкиваются с ним. Это приводит к сверхмощному космическому шоку, в ходе которого рождается гамма-излучение.

Что может светиться в космосе

Если посмотреть на ночное небо, можно лицезреть огромное количество сияющих звезд. Если обзавестись небольшим любительским телескопом, то можно рассмотреть сравнительно четко некоторые планеты, нашу Луну и прочие близкие объекты. Но, следует отметить, что это далеко не все, что светится в космосе.

Если обзавестись детектором рентгеновских лучей, то в космосе можно заметить рентгеновское свечение, которое ученые называют диффузным рентгеновским фоном. На протяжении пятидесяти лет астрономы не могли определить, что издает данное свечение.

У них было несколько вариантов. Источник этого света может располагаться за пределами нашей планетарной системы. Кроме этого, он может быть в локальных «пузырях» с высочайшей температурой.

Также, возможно, он располагается в нашей планетарной системе.

Разгадал тайну астрофизик М. Галлеаци. Он предположил, что рентгеновский фон излучает не один, а несколько объектов, и сравнил его со светом, который мы можем видеть в темноте, не догадываясь при этом, настолько от нас отдален его источник.

Какие размеры имеет наш «галактический район»

Недавно астрономам удалось определить, что наша галактика принадлежит к определенному сверхбольшому скоплению под названием «Laniakea».

Это скопление в своем составе содержит около 100 тыс. галактик, подобных нашей. Кроме этого теперь о нем известно, что оно вытянулось на 500 млн. световых лет. Его масса просто невероятна – 100 млн. млрд.

масс Солнца. Мы со своим «Млечным путем» располагаемся на окраине скопления. Проще говоря, «Laniakea» – это огромный город, являющийся частью некой страны. В нем мы представляем собой небольшой район на окраине.

Что может произойти с нашей галактикой в конце ее жизни

Ученые выяснили, что на эволюцию большинства галактических систем влияют черные дыры, расположенные в их центральной части. Эти дыры постепенно выгоняют низкотемпературный газ из галактик, позволяющий им формировать новые звезды. При этом отток газа постоянно ускоряется, чем были озадачены астрофизики на протяжении нескольких десятилетий.

Определить, почему ускоряется отток газа, помогла соседняя галактика «IC5063». Оказалось, что виновны в этом сверхэнергетические потоки из электронов, которые выходят из черных дыр. Еще астрофизики выяснили, что наша галактическая система в ближайшие пять млрд. лет может столкнуться с соседней «Андромедой».

При таком столкновении высвобождается газ, которых затем скапливается в центральной части объединенной системы, питая черную дыру. Эта окрепшая дыра будет высвобождать больше электронных потоков, которые в итоге высосут весь газ с галактической системы, как нашей, так и соседней.

После этого галактики станут «бездетными» – не смогут формировать новые звезды.

Источник: http://mirkosmosa.ru/osvaivaem-kosmos/raznoe/tainy-vselennoi-kotorye-udalos-razgadat-tolko-v-21-veke

Центр галактики

Что скрывается в центре Галактики? Наша галактика, называемая ещё Млечный путь – это огромный остров, состоящий из сотен миллиардов звёзд. Естественно, мы не можем посмотреть на неё со стороны, но по аналогии с другими звёздными скоплениями, галактика тоже имеет спиралевидную форму.

Она состоит из ядра, там звёзды находятся очень близко друг к другу, и нескольких выходящих из него спиральных рукавов. Общий диаметр галактики учёными оценивается приблизительно в 100 000 световых лет.

Солнце находится на периферии этого гигантского скопления звёзд, на расстоянии около 25 000 световых лет от ядра. Звёзды в галактике вращаются вокруг центра галактики, делая один оборот примерно за 270 миллионов лет.

Этот промежуток времени астрономы называют галактический год.

В центре Млечного пути расположено ядро нашей галактики, которое имеет форму немного сплюснутого эллипсоида. Концентрация звёзд там гораздо больше, чем в других частях галактического диска.

Если бы Солнце находилось вблизи ядра, то мы могли увидеть на ночном небе удивительное сияние тысяч крупных звёзд, яркостью не уступающих Луне. Вместо нескольких сотен маленьких светящихся точек, которые составляют сейчас наш ночной небосклон, там бы горел волшебный звёздный костёр.

Впрочем, возможно, что любоваться таким замечательным зрелищем было бы некому. По новым астрономическим исследованиям, условия в центре ядра не очень подходят для возникновения жизни.

Поток жёстких излучений от ближайших звёзд там гораздо сильнее, чем на галактической окраине, где находится Солнечная система. Так что вероятность возникновения белковой жизни в том виде, какой мы имеем на Земле, вблизи центра галактики очень невелика.

Непосредственно в оптические телескопы галактическое ядро увидеть практически невозможно. Оно скрыто от глаз земных наблюдателей межзвёздными облаками пыли и газа, расположенными как раз между Землёй и ядром.

Только когда астрономия поставила себе на службу такие инструменты как радиотелескопы и чувствительные приёмники инфракрасного излучения, стало возможным наблюдать за физическими процессами, происходящими в центре галактики.

Космическая пыль практически не поглощает радиоволны и пропускает довольно много инфракрасных волн, в отличие от оптического диапазона. Благодаря этому мы всё-таки можем составить представление о центре нашего звёздного скопления.

Астрономы уже несколько десятков лет изучают процессы, происходящие в галактическом ядре. Уникальные условия, сложившиеся из-за очень тесного расположения звёзд, представляют огромный интерес для астрофизиков.

Интенсивное взаимодействие сил тяготения различных космических объектов, процессы звёздообразования, динамика звёздного движения на относительно небольших (по космическим меркам) расстояниях – всё это можно наблюдать и делать выводы.

Недавно было получено ещё одно доказательство того, что в центре нашей галактики может находиться сверхмассивная чёрная дыра. Увидеть чёрную дыру, конечно, нельзя.

Можно только наблюдать её воздействие на соседние космические объекты и изучать, как она взаимодействует с близлежащими звёздами и облаками газа.

Вообще говоря, бесспорных свидетельств существования этих загадочных объектов до сих пор собрано не так уж и много.

Учёные из Европейской Южной обсерватории, расположенной в Чили, проводили наблюдение за звёздами в ядре с помощью инфракрасных телескопов, используя новые адаптивно-оптические способы обработки информации.

В течение 16 лет астрономы отслеживали траектории нескольких десятков звёзд, вращающихся вокруг неизвестного центра масс. Они двигаются настолько быстро, что за несколько лет наблюдения одна звезда даже совершила полный виток вокруг этого космического объекта.

Исследователи пришли к выводу, что такое движение может быть вызвано лишь воздействием мощных гравитационных сил невидимой чёрной дыры. Иного объяснения этим явлениям не смогли подобрать.

Установлено точное местонахождение этого таинственного объекта и даже вычислена его масса. Чёрная дыра оказалась в 4 миллиона раз массивнее нашего Солнца.

Давно было известно, что в центре ядра находится мощный источник радиоизлучения.

Дело в том, что гипотетическая чёрная дыра поглощает всё в пределах досягаемости, и недавно было зафиксирован факт её прохождения через огромное облако межзвёздного газа. Но даже такой массивный объект не смог «переварить» весь газ.

Остатки облака, под воздействием гравитационных сил ускорились и начали интенсивно излучать в радиодиапазоне, что стало ещё одним доказательством существования чёрной дыры.

С помощью тех же самых инфракрасных телескопов были предприняты попытки заглянуть в центр ядра не только нашей галактики, но и других похожих скоплений звёзд.

Эти галактики находятся от нас на расстоянии в сотни и тысячи раз больше, но в их ядрах, как удалось доказать, происходят очень похожие процессы.

Следовательно, наша чёрная дыра не уникальна, возможно, что другие звёздные острова тоже имеют подобные удивительные космические объекты.

Статью написал: Дмитрий

Источник: http://istorii-x.ru/tajny-vselennoj/471-tsentr-galaktiki.html

Ссылка на основную публикацию