Гигантский магелланов телескоп gmt – все о космосе

TMT: как устроен телескоп диаметром 30 метров

Первые телескопы диаметром чуть более 20 мм и скромным увеличением менее 10x, появившиеся в начале XVII столетия, совершили настоящую революцию в знаниях об окружающем нас космосе. Сегодня астрономы готовятся ввести в строй гигантские оптические инструменты диаметром в тысячи раз больше.

26 мая 2015 года стало настоящим праздником для астрономов всего мира.

В этот день губернатор штата Гавайи Дэвид Игей разрешил начать нулевой цикл строительства вблизи вершины потухшего вулкана Мауна-Кеа гигантского приборного комплекса, который через несколько лет станет одним из крупнейших оптических телескопов в мире.

Оптика для супертелескопов Три самых крупных телескопа первой половины XXI века будут использовать разные оптические схемы.

TMT построен по схеме Ричи-Кретьена с вогнутым главным зеркалом и выпуклым вторичным (оба гиперболические). E-ELT имеет вогнутое главное зеркало (эллиптическое) и выпуклое вторичное (гиперболическое).

GMT использует оптическую схему Грегори с вогнутыми зеркалами: главным (параболическим) и вторичным (эллиптическим).

Гиганты на арене

Новый телескоп получил название Тридцатиметровый телескоп (Thirty Meter Telescope, TMT), поскольку его апертура (диаметр) составит 30 м. Если все пойдет по плану, TMT увидит первый свет в 2022 году, а спустя еще год начнутся регулярные наблюдения.

Сооружение будет действительно исполинским — высотой 56 и шириной 66 м. Главное зеркало будет составлено из 492 шестиугольных сегментов общей площадью 664 м².

По этому показателю TMT на 80% превзойдет Гигантский Магелланов телескоп (Giant Magellan Telescope, GMT) с апертурой 24,5 м, который в 2021 году вступит в строй в чилийской обсерватории Лас-Кампанас, принадлежащей Институту Карнеги.

Тридцатиметровый телескоп TMT построен по схеме Ричи-Кретьена, которая используется во многих ныне действующих крупных телескопах, в том числе и в крупнейшем на настоящий момент Gran Telescopio Canarias с главным зеркалом диаметром 10,4 м. На первом этапе TMT будет оснащен тремя ИК- и оптическими спектрометрами, а в будущем планируется добавить к ним еще несколько научных приборов.

Однако мировым чемпионом TMT пробудет недолго.

На 2024 год запланировано открытие Чрезвычайно большого европейского телескопа (European Extremely Large Telescope, E-ELT) с рекордным диаметром 39,3 м, который станет флагманским инструментом Европейской южной обсерватории (ESO).

Его сооружение уже началось на трехкилометровой высоте на горе Серро-Армазонес в чилийской пустыне Атакама. Главное зеркало этого исполина, составленное из 798 сегментов, будет собирать свет с площади 978 м².

Эта великолепная триада составит группу оптических супертелескопов нового поколения, у которых долго не будет конкурентов.

Анатомия супертелескопов

Оптическая схема TMT восходит к системе, которую сотню лет назад независимо предложили американский астроном Джордж Виллис Ричи и француз Анри Кретьен.

В основе ее лежит комбинация из главного вогнутого зеркала и соосного с ним выпуклого зеркала меньшего диаметра, причем оба они имеют форму гиперболоида вращения. Лучи, отраженные от вторичного зеркала, направляются в отверстие в центре основного рефлектора и фокусируются позади него.

Использование второго зеркала в этой позиции делает телескоп более компактным и увеличивает его фокусное расстояние.

Эта конструкция реализована во многих действующих телескопах, в частности в крупнейшем на настоящий момент Gran Telescopio Canarias с главным зеркалом диаметром 10,4 м, в десятиметровых телескопах-близнецах гавайской Обсерватории Кека и в четверке 8,2-метровых телескопов обсерватории Серро-Параналь, принадлежащей ESO.

Оптическая система E-ELT также содержит вогнутое главное зеркало и выпуклое вторичное, но при этом имеет ряд уникальных особенностей. Она состоит из пяти зеркал, причем главное из них представляет собой не гиперболоид, как у TMT, а эллипсоид.

GMT сконструирован совершенно иначе. Его главное зеркало состоит из семи одинаковых монолитных зеркал диаметром 8,4 м (шесть составляют кольцо, седьмое находится в центре).

Вторичное зеркало — не выпуклый гиперболоид, как в схеме Ричи-Кретьена, а вогнутый эллипсоид, расположенный перед фокусом основного зеркала.

В середине XVII века такую конфигурацию предложил шотландский математик Джеймс Грегори, а на практике впервые воплотил Роберт Гук в 1673 году.

По грегорианской схеме построены Большой бинокулярный телескоп (Large Binocular Telescope, LBT) в международной обсерватории на горе Грэм в штате Аризона (оба его «глаза» оснащены такими же главными зеркалами, как и зеркала GMT) и два одинаковых Магеллановых телескопа с апертурой 6,5 м, которые с начала 2000-х годов работают в обсерватории Лас-Кампанас.

Сила — в приборах

Любой телескоп сам по себе — просто очень большая зрительная труба. Для превращения в астрономическую обсерваторию его необходимо снабдить высокочувствительными спектрографами и видеокамерами.

TMT, который рассчитан на срок службы более чем в 50 лет, в первую очередь оснастят тремя измерительными инструментами, смонтированными на общей платформе — IRIS, IRMS и WFOS.

IRIS (InfraRed Imaging Spectrometer) представляет собой комплекс из видеокамеры очень высокого разрешения, обеспечивающей обзор в поле 34 х 34 угловых секунды, и спектрометра инфракрасного излучения.

IRMS — это многощелевой инфракрасный спектрометр, а WFOS — широкоугольный спектрометр, который может одновременно отслеживать до 200 объектов на площади не менее 25 квадратных угловых минут.

В конструкции телескопа предусмотрено плоско-поворотное зеркало, направляющее свет на нужные в данный момент приборы, причем для переключения нужно меньше десяти минут. В дальнейшем телескоп оборудуют еще четырьмя спектрометрами и камерой для наблюдения экзопланет. Согласно нынешним планам, по одному дополнительному комплексу будет добавляться каждые два с половиной года. GMT и E-ELT также будут иметь чрезвычайно богатую приборную начинку.

Супергигант E-ELT станет самым большим в мире телескопом с главным зеркалом диаметром 39,3 м.

Он будет оснащен суперсовременной системой адаптивной оптики (АО) с тремя деформируемыми зеркалами, способными устранить искажения, возникающие на различных высотах, и сенсорами волнового фронта для анализа света от трех природных опорных звезд и четырех-шести искусственных (порожденных в атмосфере с помощью лазеров).

Благодаря этой системе разрешающая способность телескопа в ближней инфракрасной зоне при оптимальном состоянии атмосферы достигнет шести угловых миллисекунд и вплотную приблизится к дифракционному пределу, обусловленному волновой природой света.

Европейский гигант

Супертелескопы следующего десятилетия обойдутся недешево. Точная сумма пока неизвестна, но уже ясно, что их общая стоимость превысит $3 млрд. Что же эти исполинские инструменты дадут науке о Вселенной?

«E-ELT будет использован для астрономических наблюдений самых разных масштабов — от Солнечной системы до сверхдальнего космоса.

И на каждой масштабной шкале от него ожидают исключительно богатой информации, значительную часть которой не могут выдать другие супертелескопы, — рассказал «Популярной механике» член научной команды европейского гиганта Йохан Лиске, который занимается внегалактической астрономией и обсервационной космологией.

— На это есть две причины: во‑первых, E-ELT сможет собирать много больше света по сравнению со своими конкурентами, и во-вторых, его разрешающая способность будет гораздо выше. Возьмем, скажем, внесолнечные планеты. Их список быстро растет, к концу первой половины нынешнего года он содержал около 2000 названий.

Сейчас главная задача состоит не в умножении числа открытых экзопланет, а в сборе конкретных данных об их природе. Именно этим и будет заниматься E-ELT. В частности, его спектроскопическая аппаратура позволит изучать атмосферы каменных землеподобных планет с полнотой и точностью, совершенно недоступной для ныне действующих телескопов.

Эта исследовательская программа предусматривает поиск паров воды, кислорода и органических молекул, которые могут быть продуктами жизнедеятельности организмов земного типа. Нет сомнения, что E-ELT увеличит количество претендентов на роль обитаемых экзопланет».

Новый телескоп обещает и другие прорывы в астрономии, астрофизике и космологии. Как известно, существуют немалые основания для предположения, что Вселенная уже несколько миллиардов лет расширяется с ускорением, обусловленным темной энергией. Величину этого ускорения можно определить по изменениям в динамике красного смещения света далеких галактик.

Согласно нынешним оценкам, этот сдвиг соответствует 10 см/с за десятилетие. Эта величина чрезвычайно мала для измерения с помощью ныне действующих телескопов, но для E-ELT такая задача вполне по силам.

Его сверхчувствительные спектрографы позволят также получить более надежные данные для ответа на вопрос, постоянны ли фундаментальные физические константы или они меняются со временем.

E-ELT обещает подлинную революцию во внегалактической астрономии, которая занимается объектами, расположенными за пределами Млечного Пути. Нынешние телескопы позволяют наблюдать отдельные звезды в ближайших галактиках, но на больших дистанциях они пасуют.

Европейский супертелескоп предоставит возможность увидеть самые яркие звезды в галактиках, отдаленных от Солнца на миллионы и десятки миллионов световых лет. С другой стороны, он будет способен принять свет и от самых ранних галактик, о которых еще практически ничего не известно.

Он также сможет наблюдать за звездами вблизи сверхмассивной черной дыры в центре нашей Галактики — не только измерять их скорости с точностью до 1 км/с, но и открывать неизвестные ныне звезды в непосредственной близости от дыры, где их орбитальные скорости приближаются к 10% скорости света.

И это, как говорит Йохан Лиске, далеко не полный перечень уникальных возможностей телескопа.

Магелланов телескоп

Сооружает гигантский Магелланов телескоп интернациональный консорциум, объединяющий более десятка различных университетов и исследовательских институтов США, Австралии и Южной Кореи.

Как объяснил «ПМ» профессор астрономии Аризонского университета и заместитель директора Стюартовской обсерватории Деннис Заритски, грегорианская оптика была выбрана по той причине, что она повышает качество изображений в широком поле зрения.

Такая оптическая схема в последние годы хорошо зарекомендовала себя на нескольких оптических телескопах 6−8-метрового диапазона, а еще раньше ее применяли на крупных радиотелескопах.

Несмотря на то что по диаметру и, соответственно, площади светособирающей поверхности GMT уступает TMT и E-ELT, у него есть немало серьезных преимуществ.

Его аппаратура сможет одновременно измерять спектры большого числа объектов, что чрезвычайно важно для обзорных наблюдений.

Кроме того, оптика GMT обеспечивает очень высокую контрастность и возможность забраться далеко в инфракрасный диапазон. Диаметр его поля зрения, как и у TMT, составит 20 угловых минут.

По словам профессора Заритски, GMT займет достойное место в триаде будущих супертелескопов. Например, с его помощью можно будет получать информацию о темной материи — главном компоненте многих галактик. О ее распределении в пространстве можно судить по движению звезд.

Однако большинство галактик, где она доминирует, содержат сравнительно мало звезд, к тому же довольно тусклых. Аппаратура GMT будет в состоянии отслеживать движения много большего числа таких звезд, чем приборы любого из ныне действующих телескопов.

Читайте также:  Где в галактике находится солнце - все о космосе

Поэтому GMT позволит точнее составить карту темной материи, и это, в свою очередь, даст возможность выбрать наиболее правдоподобную модель ее частиц. Такая перспектива приобретает особую ценность, если учесть, что до сих пор темную материю не удавалось ни обнаружить путем пассивного детектирования, ни получить на ускорителе.

На GMT также будут выполнять и другие исследовательские программы: поиск экзопланет, включая планеты земного типа, наблюдение самых древних галактик и исследование межзвездного вещества.

В октябре 2018 года планируется вывести в космос телескоп James Webb (JWST).

Он будет работать только в оранжевой и красной зонах видимого спектра, но зато сможет вести наблюдения почти во всем среднем инфракрасном диапазоне вплоть до волн длиной 28 мкм (инфракрасные лучи с длинами волн свыше 20 мкм практически полностью поглощаются в нижнем слое атмосферы молекулами углекислого газа и воды, так что наземные телескопы их не замечают).

Поскольку он будет защищен от тепловых помех земной атмосферы, его спектрометрические приборы будут гораздо чувствительнее наземных спектрографов. Однако диаметр его главного зеркала — 6,5 м, и поэтому благодаря адаптивной оптике угловое разрешение наземных телескопов будет в несколько раз выше.

Так что, по словам Майкла Болте, наблюдения на JWST и на наземных супертелескопах будут идеально дополнять друг друга. Что касается перспектив 100-метрового телескопа, то профессор Болте весьма осторожен в оценках: «По моему мнению, в ближайшие 20−25 лет просто не удастся создать системы адаптивной оптики, способные эффективно работать в паре со стометровым зеркалом. Возможно, это произойдет где-то лет через сорок, во второй половине столетия».

Гавайский проект

«TMT — единственный из трех будущих супертелескопов, место для которого выбрано в Северном полушарии, — говорит член совета директоров гавайского проекта, профессор астрономии и астрофизики Калифорнийского университета в Санта-Крус Майкл Болте.

— Однако его смонтируют не очень далеко от экватора, на 19-м градусе северной широты. Поэтому он, как и прочие телескопы обсерватории Мауна-Кеа, сможет обозревать небосвод обоих полушарий, тем более что по части условий наблюдения эта обсерватория — одно из лучших мест на планете.

Кроме того, TMT будет работать в связке с группой расположенных по соседству телескопов: двух 10-метровых близнецов Keck I и Keck II (которые можно считать прототипами TMT), а также 8-метровых Subaru и Gemini-North.

Система Ричи-Кретьена вовсе не случайно задействована в конструкции многих крупных телескопов. Она обеспечивает хорошее поле зрения и весьма эффективно защищает и от сферической, и от коматической аберрации, искажающей изображения объектов, не лежащих на оптической оси телескопа.

К тому же для TMT запланирована поистине великолепная адаптивная оптика. Понятно, что астрономы с полным основанием ожидают, что наблюдения на TMT принесут немало замечательных открытий».

По мнению профессора Болте, и TMT, и другие супертелескопы будут способствовать прогрессу астрономии и астрофизики прежде всего тем, что в очередной раз отодвинут границы известной науке Вселенной и в пространстве, и во времени. Еще 35−40 лет назад наблюдаемый космос в основном был ограничен объектами не старше 6 млрд лет.

Сейчас удается надежно наблюдать галактики возрастом около 13 млрд лет, чей свет был испущен через 700 млн лет после Большого взрыва. Имеются кандидаты в галактики с возрастом 13,4 млрд лет, однако это пока не подтверждено.

Можно ожидать, что приборы TMT смогут регистрировать источники света возрастом лишь чуть меньше (на 100 млн лет) самой Вселенной.

TMT предоставит астрономии и множество других возможностей.

Результаты, которые будут на нем получены, позволят уточнить динамику химической эволюции Вселенной, лучше понять процессы формирования звезд и планет, углубить знания о структуре нашей Галактики и ее ближайших соседей и, в частности, о галактическом гало.

Но главное в том, что TMT, так же как GMT и E-ELT, скорее всего, позволит исследователям ответить на вопросы фундаментальной важности, которые сейчас нельзя не только корректно сформулировать, но и даже вообразить. В этом, по мнению Майкла Болте, и состоит основная ценность проектов супертелескопов.

Статья «Исполины смотрят в небо» опубликована в журнале «Популярная механика» (№10, Октябрь 2015).

Источник: https://www.PopMech.ru/science/221411-tmt-kak-ustroen-teleskop-diametrom-30-metrov/

Тридцатиметровый телескоп (Thirty Meter Telescope, TMT)

masterok

Первые телескопы диаметром чуть более 20 мм и скромным увеличением менее 10x, появившиеся в начале XVII столетия, совершили настоящую революцию в знаниях об окружающем нас космосе. Сегодня астрономы готовятся ввести в строй гигантские оптические инструменты диаметром в тысячи раз больше.

26 мая 2015 года стало настоящим праздником для астрономов всего мира. В этот день губернатор штата Гавайи Дэвид Игей разрешил начать нулевой цикл строительства вблизи вершины потухшего вулкана Мауна-Кеа гигантского приборного комплекса, который через несколько лет станет одним из крупнейших оптических телескопов в мире.

Вот как это будет выглядеть:

Гиганты на арене

Новый телескоп получил название Тридцатиметровый телескоп (Thirty Meter Telescope, TMT), поскольку его апертура (диаметр) составит 30 м. Если все пойдет по плану, TMT увидит первый свет в 2022 году, а спустя еще год начнутся регулярные наблюдения. Сооружение будет действительно исполинским — высотой 56 и шириной 66 м.

Главное зеркало будет составлено из 492 шестиугольных сегментов общей площадью 664 м². По этому показателю TMT на 80% превзойдет Гигантский Магелланов телескоп (Giant Magellan Telescope, GMT) с апертурой 24,5 м, который в 2021 году вступит в строй в чилийской обсерватории Лас-Кампанас, принадлежащей Институту Карнеги.

Однако мировым чемпионом TMT пробудет недолго.

На 2024 год запланировано открытие Чрезвычайно большого европейского телескопа (European Extremely Large Telescope, E-ELT) с рекордным диаметром 39,3 м, который станет флагманским инструментом Европейской южной обсерватории (ESO).

Его сооружение уже началось на трехкилометровой высоте на горе Серро-Армазонес в чилийской пустыне Атакама. Главное зеркало этого исполина, составленное из 798 сегментов, будет собирать свет с площади 978 м².

Эта великолепная триада составит группу оптических супертелескопов нового поколения, у которых долго не будет конкурентов.

Мы уже обсуждали подробно что такое Лазерная система стабилизации телескопов

Тридцать метров науки Тридцатиметровый телескоп TMT построен по схеме Ричи-Кретьена, которая используется во многих ныне действующих крупных телескопах, в том числе и в крупнейшем на настоящий момент Gran Telescopio Canarias с главным зеркалом диаметром 10,4 м. На первом этапе TMT будет оснащен тремя ИК- и оптическими спектрометрами, а в будущем планируется добавить к ним еще несколько научных приборов.

Фото 2.

Анатомия супертелескопов

Оптическая схема TMT восходит к системе, которую сотню лет назад независимо предложили американский астроном Джордж Виллис Ричи и француз Анри Кретьен.

В основе ее лежит комбинация из главного вогнутого зеркала и соосного с ним выпуклого зеркала меньшего диаметра, причем оба они имеют форму гиперболоида вращения. Лучи, отраженные от вторичного зеркала, направляются в отверстие в центре основного рефлектора и фокусируются позади него.

Использование второго зеркала в этой позиции делает телескоп более компактным и увеличивает его фокусное расстояние.

Эта конструкция реализована во многих действующих телескопах, в частности в крупнейшем на настоящий момент Gran Telescopio Canarias с главным зеркалом диаметром 10,4 м, в десятиметровых телескопах-близнецах гавайской Обсерватории Кека и в четверке 8,2-метровых телескопов обсерватории Серро-Параналь, принадлежащей ESO.

Оптическая система E-ELT также содержит вогнутое главное зеркало и выпуклое вторичное, но при этом имеет ряд уникальных особенностей. Она состоит из пяти зеркал, причем главное из них представляет собой не гиперболоид, как у TMT, а эллипсоид.

GMT сконструирован совершенно иначе. Его главное зеркало состоит из семи одинаковых монолитных зеркал диаметром 8,4 м (шесть составляют кольцо, седьмое находится в центре).

Вторичное зеркало — не выпуклый гиперболоид, как в схеме Ричи-Кретьена, а вогнутый эллипсоид, расположенный перед фокусом основного зеркала.

В середине XVII века такую конфигурацию предложил шотландский математик Джеймс Грегори, а на практике впервые воплотил Роберт Гук в 1673 году.

По грегорианской схеме построены Большой бинокулярный телескоп (Large Binocular Telescope, LBT) в международной обсерватории на горе Грэм в штате Аризона (оба его «глаза» оснащены такими же главными зеркалами, как и зеркала GMT) и два одинаковых Магеллановых телескопа с апертурой 6,5 м, которые с начала 2000-х годов работают в обсерватории Лас-Кампанас.

Фото 3.

Сила — в приборах

Любой телескоп сам по себе — просто очень большая зрительная труба. Для превращения в астрономическую обсерваторию его необходимо снабдить высокочувствительными спектрографами и видеокамерами.

TMT, который рассчитан на срок службы более чем в 50 лет, в первую очередь оснастят тремя измерительными инструментами, смонтированными на общей платформе — IRIS, IRMS и WFOS.

IRIS (InfraRed Imaging Spectrometer) представляет собой комплекс из видеокамеры очень высокого разрешения, обеспечивающей обзор в поле 34 х 34 угловых секунды, и спектрометра инфракрасного излучения.

Читайте также:  Созвездие дельфин - все о космосе

IRMS — это многощелевой инфракрасный спектрометр, а WFOS — широкоугольный спектрометр, который может одновременно отслеживать до 200 объектов на площади не менее 25 квадратных угловых минут.

В конструкции телескопа предусмотрено плоско-поворотное зеркало, направляющее свет на нужные в данный момент приборы, причем для переключения нужно меньше десяти минут. В дальнейшем телескоп оборудуют еще четырьмя спектрометрами и камерой для наблюдения экзопланет. Согласно нынешним планам, по одному дополнительному комплексу будет добавляться каждые два с половиной года. GMT и E-ELT также будут иметь чрезвычайно богатую приборную начинку.

Фото 4.

Европейский гигант

Супертелескопы следующего десятилетия обойдутся недешево. Точная сумма пока неизвестна, но уже ясно, что их общая стоимость превысит $3 млрд. Что же эти исполинские инструменты дадут науке о Вселенной?

«E-ELT будет использован для астрономических наблюдений самых разных масштабов — от Солнечной системы до сверхдальнего космоса.

И на каждой масштабной шкале от него ожидают исключительно богатой информации, значительную часть которой не могут выдать другие супертелескопы, — рассказал «Популярной механике» член научной команды европейского гиганта Йохан Лиске, который занимается внегалактической астрономией и обсервационной космологией.

— На это есть две причины: во-первых, E-ELT сможет собирать много больше света по сравнению со своими конкурентами, и во-вторых, его разрешающая способность будет гораздо выше. Возьмем, скажем, внесолнечные планеты. Их список быстро растет, к концу первой половины нынешнего года он содержал около 2000 названий.

Сейчас главная задача состоит не в умножении числа открытых экзопланет, а в сборе конкретных данных об их природе. Именно этим и будет заниматься E-ELT. В частности, его спектроскопическая аппаратура позволит изучать атмосферы каменных землеподобных планет с полнотой и точностью, совершенно недоступной для ныне действующих телескопов.

Эта исследовательская программа предусматривает поиск паров воды, кислорода и органических молекул, которые могут быть продуктами жизнедеятельности организмов земного типа. Нет сомнения, что E-ELT увеличит количество претендентов на роль обитаемых экзопланет».

Новый телескоп обещает и другие прорывы в астрономии, астрофизике и космологии. Как известно, существуют немалые основания для предположения, что Вселенная уже несколько миллиардов лет расширяется с ускорением, обусловленным темной энергией. Величину этого ускорения можно определить по изменениям в динамике красного смещения света далеких галактик.

Согласно нынешним оценкам, этот сдвиг соответствует 10 см/с за десятилетие. Эта величина чрезвычайно мала для измерения с помощью ныне действующих телескопов, но для E-ELT такая задача вполне по силам.

Его сверхчувствительные спектрографы позволят также получить более надежные данные для ответа на вопрос, постоянны ли фундаментальные физические константы или они меняются со временем.

E-ELT обещает подлинную революцию во внегалактической астрономии, которая занимается объектами, расположенными за пределами Млечного Пути. Нынешние телескопы позволяют наблюдать отдельные звезды в ближайших галактиках, но на больших дистанциях они пасуют.

Европейский супертелескоп предоставит возможность увидеть самые яркие звезды в галактиках, отдаленных от Солнца на миллионы и десятки миллионов световых лет. С другой стороны, он будет способен принять свет и от самых ранних галактик, о которых еще практически ничего не известно.

Он также сможет наблюдать за звездами вблизи сверхмассивной черной дыры в центре нашей Галактики — не только измерять их скорости с точностью до 1 км/с, но и открывать неизвестные ныне звезды в непосредственной близости от дыры, где их орбитальные скорости приближаются к 10% скорости света.

И это, как говорит Йохан Лиске, далеко не полный перечень уникальных возможностей телескопа.

Фото 5.

Магелланов телескоп

Сооружает гигантский Магелланов телескоп интернациональный консорциум, объединяющий более десятка различных университетов и исследовательских институтов США, Австралии и Южной Кореи.

Как объяснил «ПМ» профессор астрономии Аризонского университета и заместитель директора Стюартовской обсерватории Деннис Заритски, грегорианская оптика была выбрана по той причине, что она повышает качество изображений в широком поле зрения.

Такая оптическая схема в последние годы хорошо зарекомендовала себя на нескольких оптических телескопах 6−8-метрового диапазона, а еще раньше ее применяли на крупных радиотелескопах.

Несмотря на то что по диаметру и, соответственно, площади светособирающей поверхности GMT уступает TMT и E-ELT, у него есть немало серьезных преимуществ.

Его аппаратура сможет одновременно измерять спектры большого числа объектов, что чрезвычайно важно для обзорных наблюдений.

Кроме того, оптика GMT обеспечивает очень высокую контрастность и возможность забраться далеко в инфракрасный диапазон. Диаметр его поля зрения, как и у TMT, составит 20 угловых минут.

По словам профессора Заритски, GMT займет достойное место в триаде будущих супертелескопов. Например, с его помощью можно будет получать информацию о темной материи — главном компоненте многих галактик. О ее распределении в пространстве можно судить по движению звезд.

Однако большинство галактик, где она доминирует, содержат сравнительно мало звезд, к тому же довольно тусклых. Аппаратура GMT будет в состоянии отслеживать движения много большего числа таких звезд, чем приборы любого из ныне действующих телескопов.

Поэтому GMT позволит точнее составить карту темной материи, и это, в свою очередь, даст возможность выбрать наиболее правдоподобную модель ее частиц. Такая перспектива приобретает особую ценность, если учесть, что до сих пор темную материю не удавалось ни обнаружить путем пассивного детектирования, ни получить на ускорителе.

На GMT также будут выполнять и другие исследовательские программы: поиск экзопланет, включая планеты земного типа, наблюдение самых древних галактик и исследование межзвездного вещества.

Супергигант E-ELT станет самым большим в мире телескопом с главным зеркалом диаметром 39,3 м.

Он будет оснащен суперсовременной системой адаптивной оптики (АО) с тремя деформируемыми зеркалами, способными устранить искажения, возникающие на различных высотах, и сенсорами волнового фронта для анализа света от трех природных опорных звезд и четырех-шести искусственных (порожденных в атмосфере с помощью лазеров).

Благодаря этой системе разрешающая способность телескопа в ближней инфракрасной зоне при оптимальном состоянии атмосферы достигнет шести угловых миллисекунд и вплотную приблизится к дифракционному пределу, обусловленному волновой природой света.

Гавайский проект

«TMT — единственный из трех будущих супертелескопов, место для которого выбрано в Северном полушарии, — говорит член совета директоров гавайского проекта, профессор астрономии и астрофизики Калифорнийского университета в Санта-Крус Майкл Болте.

— Однако его смонтируют не очень далеко от экватора, на 19-м градусе северной широты. Поэтому он, как и прочие телескопы обсерватории Мауна-Кеа, сможет обозревать небосвод обоих полушарий, тем более что по части условий наблюдения эта обсерватория — одно из лучших мест на планете.

Кроме того, TMT будет работать в связке с группой расположенных по соседству телескопов: двух 10-метровых близнецов Keck I и Keck II (которые можно считать прототипами TMT), а также 8-метровых Subaru и Gemini-North.

Система Ричи-Кретьена вовсе не случайно задействована в конструкции многих крупных телескопов. Она обеспечивает хорошее поле зрения и весьма эффективно защищает и от сферической, и от коматической аберрации, искажающей изображения объектов, не лежащих на оптической оси телескопа.

К тому же для TMT запланирована поистине великолепная адаптивная оптика. Понятно, что астрономы с полным основанием ожидают, что наблюдения на TMT принесут немало замечательных открытий».

По мнению профессора Болте, и TMT, и другие супертелескопы будут способствовать прогрессу астрономии и астрофизики прежде всего тем, что в очередной раз отодвинут границы известной науке Вселенной и в пространстве, и во времени. Еще 35−40 лет назад наблюдаемый космос в основном был ограничен объектами не старше 6 млрд лет.

Сейчас удается надежно наблюдать галактики возрастом около 13 млрд лет, чей свет был испущен через 700 млн лет после Большого взрыва. Имеются кандидаты в галактики с возрастом 13,4 млрд лет, однако это пока не подтверждено.

Можно ожидать, что приборы TMT смогут регистрировать источники света возрастом лишь чуть меньше (на 100 млн лет) самой Вселенной.

TMT предоставит астрономии и множество других возможностей.

Результаты, которые будут на нем получены, позволят уточнить динамику химической эволюции Вселенной, лучше понять процессы формирования звезд и планет, углубить знания о структуре нашей Галактики и ее ближайших соседей и, в частности, о галактическом гало.

Но главное в том, что TMT, так же как GMT и E-ELT, скорее всего, позволит исследователям ответить на вопросы фундаментальной важности, которые сейчас нельзя не только корректно сформулировать, но и даже вообразить. В этом, по мнению Майкла Болте, и состоит основная ценность проектов супертелескопов.

Читайте также:  Созвездия в мае - все о космосе

Оптика для супертелескопов

Три самых крупных телескопа первой половины XXI века будут использовать разные оптические схемы. TMT построен по схеме Ричи-Кретьена с вогнутым главным зеркалом и выпуклым вторичным (оба гиперболические).

E-ELT имеет вогнутое главное зеркало (эллиптическое) и выпуклое вторичное (гиперболическое). GMT использует оптическую схему Грегори с вогнутыми зеркалами: главным (параболическим) и вторичным (эллиптическим).

Апертура (диаметр) нового телескопа составит 30 метров. Если все пойдет по плану, TMT впервые увидит свет звезд в 2022 году, а спустя еще год начнутся регулярные наблюдения.

Супертелескоп E-ELT обещает подлинную революцию во внегалактической астрономии, которая занимается объектами, расположенными за пределами Млечного Пути.

Любой телескоп сам по себе — просто очень большая зрительная труба. Для превращения в астрономическую обсерваторию его необходимо снабдить высокочувствительными спектрографами и видеокамерами.

Фото 6.

На земле и в небесах

В октябре 2018 года планируется вывести в космос телескоп James Webb (JWST).

Он будет работать только в оранжевой и красной зонах видимого спектра, но зато сможет вести наблюдения почти во всем среднем инфракрасном диапазоне вплоть до волн длиной 28 мкм (инфракрасные лучи с длинами волн свыше 20 мкм практически полностью поглощаются в нижнем слое атмосферы молекулами углекислого газа и воды, так что наземные телескопы их не замечают).

Поскольку он будет защищен от тепловых помех земной атмосферы, его спектрометрические приборы будут гораздо чувствительнее наземных спектрографов. Однако диаметр его главного зеркала — 6,5 м, и поэтому благодаря адаптивной оптике угловое разрешение наземных телескопов будет в несколько раз выше.

Так что, по словам Майкла Болте, наблюдения на JWST и на наземных супертелескопах будут идеально дополнять друг друга. Что касается перспектив 100-метрового телескопа, то профессор Болте весьма осторожен в оценках: «По моему мнению, в ближайшие 20−25 лет просто не удастся создать системы адаптивной оптики, способные эффективно работать в паре со стометровым зеркалом. Возможно, это произойдет где-то лет через сорок, во второй половине столетия».

Фото 7.

Фото 9.

Фото 10.

Фото 11.

Фото 12.

Фото 13.

Фото 14.

[источники]

источники

http://www.popmech.ru/science/221411-tmt-kak-ustroen-teleskop-diametrom-30-metrov/

http://www.infuture.ru/article/8603

Телескоп TMT позволит заглянуть за 13 миллиардов световых лет

А вот что мы еще обсуждали про телескопы: вот вам Большой Телескоп Азимутальный, а вот Китайский телескоп в полкилометра. Не могу не напомнить вам Самый большой радиотелескоп в мире ,а так же про Швейцарский «Сфинкс» и Европейскую южную обсерваторию Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия – http://infoglaz.ru/?p=82983

Источник: https://masterok.livejournal.com/2619598.html

Мегапроекты человечества: Гигантский Магелланов телескоп и всевидящее око

Гигантский Магелланов телескоп (ГМТ) — один из самых амбициозных современных проектов в области астрономии. Специалисты оснастят эту колоссальную наземную установку семью зеркалами диаметром по 8,4 метра каждое.

Суммарная площадь зеркальной поверхности составит порядка 350 м². Благодаря этому телескоп будет способен улавливать вчетверо больше света, чем самые крупные современные приборы.

При этом разрешающая способность у ГМТ будет в 10 раз выше, чем у легендарного телескопа Хаббл.

Такие характеристики способны сделать Гигантский Магелланов телескоп настоящей рок-звездой современной астрофизики. Ученые ожидают, что эта установка позволит нам обнаружить и изучить неизвестные до сих пор потенциально обитаемые планеты.

Сегодня астрономам удалось открыть множество небесных тел, которые претендуют на звание «сестер» Земли.

Больше всего напоминают нашу планету «водный мир» Кеплер 62e, окутанная красным сумраком Глизе 581g (Зармина), экзопланета в тройной системе звезд Глизе 667Сс, «страна горячих бурь» Тау Кита е и невероятно крупная Kepler 22b.

Строительство Гигантского Магелланова телескопа позволит больше узнать об этих планетах и открыть новые. Кроме того, установка будет использоваться для исследования черных дыр и темной энергии — загадочного гравитационного топлива, которое со времен Большого взрыва толкает галактики прочь друг от друга и заставляет Вселенную расширяться.

Гигантский Магелланов телескоп планируется установить в обсерватории Лас-Кампанас, которая находится в Андах, близ пустыни Атакама в Чили. Достоинство такого местоположения в том, что в этой пустыне очень низкая влажность и, соответственно, мало облаков.

Все работы должны завершиться к началу 2020-х годов. Новый телескоп станет «большим братом» двух Магеллановых телескопов, которые уже работают в Лас-Кампанас. Их диаметр составляет 6,5 метров, однако по сравнению с ГМТ эти устройства покажутся просто крошками.

Ключевым элементом в конструкции ГМТ станет система зеркал. По форме она будет напоминать огромный цветок. Свет из глубин Вселенной она будет направлять на семь зеркал поменьше, а затем — на передающие изображение камеры.

Когда все зеркала для Гигантского Магелланова телескопа будут готовы, их установят на закрытую платформу на вершине безжизненной горы.

ГМТ оснастят подъемным механизмом, кранами, системой кондиционеров, источниками питания, системой циркуляции жидкого азота и жидкого гелия: словом, механизм его строительства и работы будет весьма сложным.

директор ГМТ, доктор наук.

Мы должны сделать зеркала Гигантского Магелланова телескопа очень точными. Ведь свет, который мы ищем, идет к Земле 5-10 млрд. световых лет.

Мы не можем позволить себе упустить даже малейшую часть информации, которая путешествовала во времени и пространстве так долго.

При этом суммарный диаметр зеркальной поверхности будет составлять порядка 25 м. Это невероятный вызов нашим техническим возможностям.

ГМТ может помочь нам ответить на многие вопросы. Например, сегодня мы знаем, что в центре практически каждой галактики есть огромная черная дыра.

Но нам неизвестно, как происходит их формирование: сначала появляется черная дыра, и галактика растет вокруг нее, или сначала формируется галактика, а черная дыра возникает потом? Сейчас мы можем видеть только ближайшие и самые массивные среди подобных объектов.

Гигантский Магелланов телескоп позволит нам рассмотреть практически любую черную дыру в космосе. Мы сможем увидеть их очень близко.

Мы получим возможность изучать таинственные явления: гамма-выплески, нейтронные звезды, «космических монстров», — а также вещи, о которых мы пока не имеем никакого понятия и на которые мы просто наткнемся. Нейтронные звезды тоже были открыты по чистой случайности.

председатель правления ГМТ, доктор наук.

В каждом из зеркал только стеклянная часть весит 20 тонн. А ведь таких частей семь. Огромная подвижная стальная опора будет поддерживать зеркала, элементы конструкции, измерительные приборы и верхнюю часть телескопа, где мы установим вторую группу зеркал.

Мы должны высчитать расстояние между нею и основными зеркалами с точностью до 1/500000000, а затем сфокусировать свет в крошечной точке. Это поразительная задача! Система стен телескопа будет высотой с 22-этажный дом. Это необычное здание сможет поворачиваться.

Это позволит нам направить телескоп в небо и увидеть самые разные объекты.

По сути, все механизмы, которые мы разрабатываем и создаем с таким старанием и трудом, нужны лишь затем, чтобы получить крошечные пучки фотонов. Они прилетят сюда из далекого космоса, ударятся о поверхность этого маленького клочка зеркальной поверхности в нашем телескопе и позволят нам прикоснуться к тайнам Вселенной, которые мы пока не можем понять.

Сейчас мы только начинаем изучать потенциально обитаемые планеты. У нас есть фотографии, снятые телескопом Хаббл. Это самые подробные снимки неба, которые когда-либо делало человечество. И все же, на них мы видим лишь тусклые маленькие пятнышки. Гигантский Магелланов телескоп позволит получать изображения с разрешением в 10 раз выше, чем позволяет Хаббл.

Кроме того, мы сможем увидеть спектр свечения далеких объектов.

Мы как Фернан Магеллан, в честь которого назван телескоп. Недалеко от места, где будет установлен наш прибор, этот мореплаватель когда-то огибал мыс Горн. Впереди у Магеллана был целый новый океан, который ему только предстояло открыть. Мы не знаем, что там, в пространстве. Но мы посылаем туда наш «корабль», чтобы попытаться это что-то найти.

Первое зеркало ГМТ было изготовлено в 2005 году. Затем последовал большой перерыв, после чего в 2012 году специалисты создали второе зеркало. 6 декабря этого года было закончено третье. Четвертое зеркало планируется отлить в 2014 году.

Процесс изготовления зеркал Гигантского Магелланова телескопа поражает воображение. Чтобы создать их, специалисты по одному помещают прозрачные куски стекла в огромную круглую форму, разделенную на ячейки наподобие пчелиных сот.

Затем ее нагревают до 1171°С и начинают медленно вращать, чтобы стекло растаяло и равномерно распределилось внутри. После этого зеркало остужают и полируют.

Весь процесс производства занимает несколько месяцев, ведь зеркала гигантского телескопа предназначены для того, чтобы улавливать невероятно древний свет, пришедший к Земле из самых дальних уголков Вселенной.

Он же будет и светом самых ранних мгновений ее существования, — вот почему, возможно, телескоп поможет нам больше узнать об эволюции Вселенной.

По сути, все колоссальные усилия по созданию установки направлены лишь для того, чтобы человечество получило возможность улавливать мельчайшие горстки фотонов, которые прежде не был способен зафиксировать ни один земной прибор. Однако именно эти горстки несут в себе информацию, которая может стать ключом к разгадке по-настоящему великих тайн.

Источник: https://theoryandpractice.ru/posts/8212-megaprojects_magellan

Ссылка на основную публикацию