Горизонт событий – все о космосе

Что такое космический горизонт?

В Словаре, изданном в 1910 году, горизонт определялся как «окружность круга… дальше которого ничего не видно». Но за прошедший век наука расширила это понятие до масштабов Вселенной.

Привычный зрительный горизонт, обусловленный шарообразностью нашей планеты, статичен и не зависит от времени наблюдения (к тому же на километровых дистанциях конечность скорости света не принимают в расчет).

Но в применении ко Вселенной понятие горизонта теряет былую простоту. Космическое пространство не двумерно, как земной рельеф, а трехмерно, к тому же Вселенная расширяется, причем с переменной скоростью.

Более того, применительно к космическим масштабам необходимо помнить о конечности скорости света.

Два горизонта

Понятие космологического горизонта ввели в науку вначале 1950-х годов в связи с разработкой теории горячей Вселенной. А в 1956 году крупный специалист по ОТО Вольфганг Риндлер из Корнеллского университета уточнил и расширил эту концепцию в статье «Visual horizons in world-models».

Риндлер предложил по‑разному рассматривать космические объекты длительного существования, такие как звезды и галактики с их протяженными мировыми линиями (кривыми в пространстве-времени, описывающими движение тела), и кратковременные эффекты, такие, например, как взрывы сверхновых, которым соответствуют небольшие фрагменты таких линий, а в пределе — просто точки.

Корректно описать наблюдаемость объектов обоих типов можно лишь при помощи различных горизонтов.

Границу между наблюдаемыми и ненаблюдаемыми мировыми линиями Риндлер назвал горизонтом частиц, а аналогичную границу между точками этих линий — горизонтом событий.

Согласно стандартной космологической модели, мы живем в однородной изотропной Вселенной. Отсюда следует, что горизонт частиц представляет собой сферическую поверхность, в центре которой находится наблюдатель.

Внутренность сферы заполнена долгоживущими космическими объектами (скажем, галактиками), чей испущенный в прошлом свет приходит к наблюдателю. С внешней стороны этой сферы находятся галактики, которые наблюдатель не может видеть ни на каких этапах их истории, предшествовавших моменту наблюдения.

Таким образом, горизонт частиц отсекает наблюдаемую зону Вселенной от ненаблюдаемой, то есть по своей сути не слишком отличается от географического горизонта.

А вот горизонт событий не столь нагляден: он разделяет события, которые наблюдатель может увидеть в тот или иной момент времени в своем собственном будущем, от событий, увидеть которые ему никогда не дано. В некоторых космологических моделях присутствуют оба горизонта, в некоторых — только один из них, а в некоторых горизонтов нет вовсе.

Статичный мир

Для простоты рассмотрим горизонты безграничной статичной вселенной.

В ньютоновском мире с бесконечной скоростью света (и, как следствие, абсолютным временем), который не имеет ни начала, ни конца во времени, то есть существует вечно, наблюдатель, где бы он ни находился, всегда может видеть все светила без единого исключения. Поэтому в таком мире нет ни горизонта частиц, ни горизонта событий (собственно говоря, там нет и самих событий!) — он дважды безгоризонтен.

Теперь допустим, что в галактиках иногда взрываются сверхновые. Если скорость света бесконечна, эти вспышки мгновенно достигают наблюдателя, так что двойная безгоризонтность по‑прежнему имеет место. Однако она сохраняется и при конечной скорости света!

В самом деле, допустим, что какая-то галактика на короткое время увеличила блеск из-за взрыва сверхновой. В вечной и статичной вселенной свет этой вспышки рано или поздно придет к любому наблюдателю. Отсюда следует, что в этом мире нет сигналов, которые наблюдатель никогда не сможет увидеть, и, следовательно, нет горизонта событий (разумеется, там по‑прежнему нет и горизонта частиц).

Далее рассмотрим гипотетическую статичную вселенную с началом во времени. В таком мире горизонт частиц представляет собой сферу, расширяющуюся со скоростью света.

Если через 5 млрд лет после сотворения этого мира в какой-нибудь из галактик появится наблюдатель, его горизонт частиц окажется сферой радиусом в 5 млрд световых лет.

Еще через миллиард лет радиус составит 6млрд световых лет, через 2 млрд — 7 млрд. Этот мир остается неизменным, но его наблюдаемая часть постоянно расширяется.

И наконец, предположим, что наша воображаемая статичная вселенная не имеет начала, но имеет конец, где обрываются все мировые линии, в том числе и линия наблюдателя. Он по-прежнему видит все галактики, так что горизонт частиц в этом мире отсутствует. Однако наблюдатель теперь уже может заметить только часть изменений в свечении этих галактик.

Он увидит вспышку сверхновой, взорвавшейся в галактике, отдаленной от него на 10 млн световых лет, если взрыв случился за 11 млн лет до конца света. Но если сверхновая вспыхнула за 9 млн лет до этого печального финала, наблюдатель даже в последний момент своего существования о ней не узнает — просто не успеет.

Следовательно, в таком мире имеется горизонт событий.

Как ни примитивна модель статичной вселенной, она позволяет уяснить ключевые черты обоих горизонтов. За пределами горизонта частиц лежат мировые линии, которые в данный момент не могут наблюдаться ни в одном из своих предшествующих фрагментов. А вне горизонта событий пребывают события, которые наблюдатель не способен узреть за все время своего существования.

Ближе к реальности

Наша Вселенная, как известно, отнюдь не статична — она расширяется, причем в течение последних пяти-шести миллиардов лет даже с ускорением (считается, что оно порождено ненулевой энергией физического вакуума, получившей не особенно удачное, но эффектное название — темная энергия).

При этом она обладает плоской геометрией, поскольку полная плотность ее энергии равна критическому значению, при котором кривизна космического пространства зануляется.

Если бы это равенство имело место в отсутствие темной энергии, прошлая, нынешняя и последующая динамика Вселенной (за исключением ее самого раннего этапа) соответствовали бы модели Эйнштейна — де Ситтера («ПМ» № 6'2012).

Согласно закону Хаббла, радиальные скорости далеких галактик пропорциональны расстоянию до них с коэффициентом, который называется параметром Хаббла H (он зависит от возраста Вселенной и в настоящую эпоху обозначается H0).

Поэтому на некоторой дистанции, равной c/H, скорость галактического разбегания становится равной скорости света. Такое расстояние называют дистанцией Хаббла (или радиусом хаббловской сферы), и в нашу эпоху оно приблизительно равно 14 млрд световых лет.

Относительно центра сферы скорость расширения пространства внутри нее меньше световой, а вне ее — больше.

Очень важно, что радиус сферы Хаббла в общем случае вовсе не равен радиусу наблюдаемой части мироздания, который, по определению, есть радиус горизонта частиц.

Это наглядно представлено в приведенном выше примере статичной вселенной с одновременно вспыхнувшими галактиками. Поскольку там параметр Хаббла равен нулю, хаббловский радиус бесконечен.

А вот радиус горизонта частиц пропорционален возрасту Вселенной и при любых конечных сроках ее жизни тоже конечен.

Рассмотрим вспышки сверхновых, одновременно взорвавшихся в двух разных галактиках. Пусть одна из галактик расположена внутри сферы Хаббла наблюдателя, а вторая — вне ее.

Наблюдатель увидит первую вспышку и не увидит второй, поскольку расширяющееся пространство «уносит» с собой ее фотоны со скоростью больше световой.

На самой сфере Хаббла световые кванты как бы вморожены в пространство, которое расширяется там со световой скоростью, и поэтому она становится еще одним горизонтом — горизонтом фотонов.

Если расширение вселенной замедляется, то радиус сферы Хаббла возрастает, поскольку он обратно пропорционален уменьшающемуся хаббловскому параметру.

В таком случае по мере старения вселенной эта сфера охватывает все новые и новые области пространства и впускает все новые и новые световые кванты.

С течением времени наблюдатель увидит галактики и внутригалактические события, которые ранее находились вне его фотонного горизонта. Если же расширение вселенной ускоряется, то радиус хаббловской сферы, напротив, сокращается.

Конкретная скорость расширения сферы Хаббла зависит от деталей эволюции вселенной. Например, в мире Эйнштейна — де Ситтера она равна полутора световым скоростям.

Поскольку пространство на хаббловской сфере раздувается со световой скоростью, разница между темпами расширения фотонного горизонта и расширения пространства равна половине скорости света.

В то же время горизонт частиц во вселенной Эйнштейна — де Ситтера расширяется вдвое быстрее фотонного горизонта (следовательно, со скоростью, равной трем световым).

С глаз долой

Из-за конечности скорости света наблюдатель видит небесные объекты такими, какими они были в более или менее отдаленном прошлом. За пределами горизонта частиц лежат галактики, которые в данный момент не наблюдаются ни на едином этапе их предшествующей эволюции.

Это означает, что их мировые линии в пространстве-времени нигде не пересекают поверхность, по которой распространяется свет, приходящий к наблюдателю с момента рождения Вселенной (она называется ретроградным световым конусом). Внутри горизонта частиц расположены галактики, чьи мировые линии в прошлом пересеклись с этой поверхностью.

Именно эти галактики и составляют часть Вселенной, в принципе доступную наблюдению в данный момент времени.

Ретроградный световой конус любого наблюдателя во Вселенной, расширяющейся после Большого взрыва, сходится на этой начальной сингулярности и охватывает конечный объем. Отсюда еще раз следует, что наблюдатель может видеть лишь конечную часть своего мира.

Таким образом, нам не дано знать, какова Вселенная за пределами нынешнего горизонта частиц. Некоторые теории ранней Вселенной утверждают, что очень далеко за этим горизонтом она совсем не похожа на то, что мы видим.

Этот тезис вполне научен, поскольку он вытекает из вполне разумных вычислений, однако его нельзя ни опровергнуть, ни подтвердить с помощью астрономических наблюдений, доступных в наше время.

Более того, если пространство и дальше будет расширяться с ускорением, его нельзя будет проверить и в сколь угодно отдаленном будущем.

https://www.youtube.com/watch?v=LLD3nGeecS8

В статичной вселенной с фиксированным началом радиус горизонта частиц равен произведению ее возраста на скорость света. В нашей Вселенной он гораздо больше, поскольку расширяющееся пространство увлекает за собой световые кванты.

Для определения этого радиуса требуется знание всей динамики Вселенной, в том числе и в фазе инфляции, которым наука пока не располагает.

По современным данным, масштабный фактор Вселенной в ходе инфляции увеличился как минимум в 1027 раз, но эта оценка может быть сильно занижена (стандартная космологическая модель вообще не описывает фазу инфляции и отсчитывает возраст Вселенной от ее завершения).

В мире Эйнштейна — де Ситтера радиус горизонта частиц равен удвоенному радиусу хаббловской сферы, который, в свою очередь, в полтора раза превышает произведение возраста этого мира и скорости света.

Легко посчитать, что в соответствии с этой моделью нынешний радиус горизонта частиц (и, следовательно, радиус наблюдаемой с Земли области космоса) составляет около 41 млрд световых лет, или 13 гигапарсек.

Поскольку Вселенная в эпоху доминирования темной энергии вышла на ускоренное расширение, радиус ее горизонта частиц должен оказаться несколько больше. Впрочем, учет темной энергии дает довольно близкое значение — 14 гигаперсек.

Стоит напомнить, что наши телескопы не могут заглянуть в эпоху, когда космическое пространство было заполнено плазмой и не содержало свободных фотонов. Она завершилась через 380 000 лет после Большого взрыва.

Вселенная тогда эволюционировала практически точно по модели Эйнштейна — де Ситтера и продолжала это делать еще не менее 8 млрд лет.

Позднее темная энергия внесла свои поправки, но пока что они увеличили горизонт событий не слишком сильно.

Если нынешняя плотность темной энергии в будущем не изменится, эволюция Вселенной постепенно начнет все больше и больше соответствовать модели де Ситтера.

В таком случае радиус горизонта событий с течением времени будет стремиться к предельному постоянному значению.

В очень далеком будущем все источники света, расположенные вне гравитационно связанной Местной группы галактик (к которой принадлежит и наш Млечный Путь), окажутся за пределами этого горизонта и навсегда станут невидимыми.

Статья «Заглянуть за горизонт» опубликована в журнале «Популярная механика» (№10, Октябрь 2012).

Источник: https://www.PopMech.ru/science/13056-chto-takoe-kosmicheskiy-gorizont/

Что такое горизонт событий, или как вырваться из черной дыры

В 1783 году священник из английской деревни Торнхилл Джон Митчелл представил в журнал «Философские труды Лондонского Королевского общества» свою статью.

В ней он писал, что достаточно массивная и компактная звезда будет иметь столь сильное гравитационное поле, что свет не сможет уйти от нее далеко — он будет затянут обратно за счет гравитационного притяжения.

Митчелл считал, что таких объектов в космосе может быть очень много, но увидеть их невозможно — так как их свет поглощается ими же. Тем не менее теоретически их гравитационное притяжение можно обнаружить. Статья не вызвала ажиотажа в научном сообществе и прошла практически незамеченной.

Спустя несколько лет французский ученый Пьер-Симон Лаплас, незнакомый с работой Митчелла, выдвинул схожую гипотезу. Он опубликовал ее в своем труде «Система мира», однако после второго издания теория из книги исчезла — по всей видимости, Лаплас решил, что о такой дурацкой идее и говорить не стоит.

А вот в XIX веке ученым уже не могла прийти в голову мысль о невидимых звездах. Все дело в том, что ньютоновское убеждение относительно того, что свет состоит из частиц, вышло из моды.

Ученые пришли к выводу, что концепция, согласно которой свет — это волна, лучше описывает явления окружающего мира.

О том, как гравитация действует на волны, ничего известно не было, стало быть, и рассуждения о небесных объектах, «затягивающих» собственный свет, пришлось забыть.

Вновь вспомнили о них только в XX веке.

В 1916 году, практически сразу после публикации Эйнштейном общей теории относительности, Карл Шварцшильд описал «застывшую звезду», как тогда называли такие объекты, не рассматривая процесс ее зарождения, а в 1939 этот недостающий элемент в теорию добавили Роберт Оппенгеймер и Хартланд Снайдер. И только 1969 году американский физик Джон Уилер придумал термин «черная дыра» (Уилер вообще был романтиком, и второй придуманный им термин, «кротовая нора», еще более любим фантастами).

Читайте также:  Рея – спутник сатурна - все о космосе

Загробная жизнь звезды

Жизненный цикл звезды чем-то похож на человеческий — она рождается и умирает. Вначале огромное облако газа (преимущественно водорода) в космосе начинает сжиматься под воздействием собственной гравитации, его молекулы все чаще сталкиваются друг с другом, и их скорости увеличиваются.

Газ разогревается, и при определенной температуре возникает реакция термоядерного синтеза, в результате которой образуется гелий. В ходе реакции выделяется тепло и излучается свет. Так возникает звезда. Тепло создает дополнительное давление, которое уравновешивает гравитационное притяжение, и звезда перестает сжиматься — в стабильном состоянии она может существовать более миллиона лет.

Но рано или поздно запасы реагирующего водорода у звезды иссякают, и она начинает остывать и сжиматься.

Тут сравнение с человеческой жизнью заканчивается, потому что дальнейшая судьба светила зависит от его массы. Из небольших звезд получаются белые карлики, объекты с плотностью в сотни тонн на кубический сантиметр.

В космосе их обнаружено довольно много, и наше Солнце со временем пополнит их ряды. Из более крупных светил образуются нейтронные звезды.

Их размер куда меньше, чем у белых карликов, зато плотность составляет сотни миллионов тонн на кубический сантиметр.

И, наконец, если масса звезды достаточно велика, то образующаяся нейтронная звезда под воздействием гравитации сжимается все сильнее и сильнее, пока не станет черной дырой.

Выхода нет

Одним из важнейших достижений Эйнштейна было открытие природы гравитации. Ученый показал, что она, по сути, является искривлением пространства. Под воздействием массивных объектов оно «проминается», как натянутая эластичная ткань, на которую положили тяжелый предмет.

Продолжая это сравнение, можно сказать, что точно так же в виде тяжелого шара можно представить и Солнце, а Земля, будучи значительно более мелким шариком, не притягивается к нему, а всего лишь вращается в получившейся воронке (с той только разницей, что настоящий шарик со временем скатился бы вниз).

Так же можно представить и рождение черной дыры — шар на натянутой эластичной ткани становится все более маленьким и плотным, и ткань все сильнее прогибается под его весом, пока наконец он не становится настолько маленьким, что она просто смыкается над ним и он пропадает из поля зрения.

Примерно так происходит и в реальности: пространство-время вокруг звезды свертывается, и она пропадает из Вселенной, оставляя в ней лишь сильно искривленную область пространства-времени.

В самой же черной дыре искривление пространства-времени становится бесконечным — такое состояние физики называют сингулярностью, и в нем нет ни пространства, ни времени в нашем понимании.

Из-за происходящего искривления лучи света, идущие от звезды, меняют свои траектории. Если представить себе эти лучи как конусы, вершина которых — у звезды, а «подошва» — это круг расходящегося света, то можно сказать, что в процессе коллапса эти конусы постепенно все больше наклоняются внутрь, к звезде.

Наблюдателю, смотрящему на этот процесс, будет казаться, что свечение становится все более тусклым и красным (это потому что красный свет имеет наибольшую длину волны). В конце концов искривление (то есть гравитационное поле) станет настолько сильным, что ни один луч света не сможет выйти наружу.

Согласно теории относительности, ничто не может двигаться быстрее света, и это означает, что начиная с этого момента ничто не может выбраться за пределы этого гравитационного поля. Эту область пространства, из которой нет выхода, и называют черной дырой. Ее граница определяется по траектории тех световых лучей, которые первыми потеряли возможность выйти наружу.

Она называется горизонтом событий черной дыры — так же как, глядя из окна, мы не видим, что находится за горизонтом, так и условный наблюдатель не может понять, что происходит внутри границ невидимой мертвой звезды.

На самом деле все не так

Убеждение, что ничто не может покинуть черную дыру, было незыблемым до 70-х годов XX века.

А в 1974 году Стивен Хокинг предположил, что черные дыры в результате квантовых процессов все же излучают разнообразные элементарные частицы, преимущественно фотоны. В 2010-х годах разные группы ученых в лабораторных условиях подтвердили его предположение.

При этом в природе такого излучения пока не было обнаружено, как, впрочем, и самих черных дыр — Нобелевская премия за их открытие еще ждет своего счастливчика.

Источник: https://theoryandpractice.ru/posts/7405-chto-takoe-gorizont-sobytiy-ili-kak-vyrvatsya-iz-chernoy-dyry

Фантастика «Сквозь горизонт». Как выглядит космический Ад?

Однако есть категория кинодеятелей, коим прогресс чужд. Эти люди (режиссеры, сценаристы, продюсеры) на протяжении десятилетий продолжают снимать сугубо свое кино.

Они прекрасно осознают, что выше определенной планки им не прыгнуть. Рожденный ползать, как говорится. Поэтому и особо не пытаются. Ярчайшим примером сего правила является Пол У. С.

Андерсон, автор «Обители зла», «Чужого против Хищника» и «Мушкетеров».

На протяжении всей своей карьеры Пол — как те глухонемые в столовой: «Когда я ем, я как всегда». Но если для реальных больных этот анекдот может показаться обидным, то Андерсон на критику в свой адрес уже давно не реагирует.

Он счастливо женат на одной из красивейших топ-моделей и актрис Милле Йовович и продолжает радовать своих фанатов наитупейшими, но визуально симпатичными опусами.

Тот самый случай, когда «вещь в себе» и не собирается становиться на следующую ступень эволюции.

Поклонники компьютерной игры Mortal Kombat были очарованы прямолинейностью андерсоновской экранизации, хотя, по сути, из всего фильма примечательными были только белоснежный Кристофер Ламберт и мощный саундтрэк.

Все ждали, что следующим этапом Андерсон возьмется за постраничную реализацию телефонной книги, но тот внезапно воспылал любовью к жанру научной фантастики.

Результатом его бурной, но бестолковой деятельности стал фантастический ужастик 1997 года «Сквозь горизонт», иногда встречающийся в русском переводе под астрономическим заголовком «Горизонт событий».

…В году 2040 человечество научилось преодолевать скорость света. Теория относительности при этом не пострадала.

Просто доктор наук Уильям Уэйр (Сэм Нил) изобрел гравитационный двигатель, способный складывать пространство и время, как постер в журнале «Плейбой».

Вплоть до того момента, когда дырочки сходятся и космический объект плавно телепортируется в любую точку Вселенной без затрат топлива и кислорода. Свое детище доктор назвал «Горизонт событий» и запустил на дальний край Солнечной системы для опытов.

Корабль благополучно долетел до Нептуна, запустил инновационный движок и дематериализовался к чертовой бабушке.

Лишь спустя семь лет на Земле перехватили одинокий и бессмысленный радиосигнал, свидетельствующий о том, что «Горизонт событий» то ли вернулся, то ли никуда и не улетал.

Уэйр присоединяется к спасательной миссии, которая старым дедовским способом добирается до Нептуна, где и обнаруживает звездолет-призрак.

Живых на борту не обнаружено. Бортовой журнал заканчивается абракадаброй и размытыми кадрами чукалова. Капитан Миллер (Лоренс Фишберн) и его люди находятся в недоумении, ибо плыли-плыли, а на берегу описались.

Однако гравитационный двигатель в порядке, что дает Уэйру право рассуждать о возможном продолжении эксперимента. Проблема в том, что свой полет «Горизонт событий» уже совершил.

И теперь корабль — вовсе не корабль, а неизведанная наукой форма жизни, мечтающая показать вновь прибывшим астронавтам всю мощь космического Хельхейма…

Учитывая, что ни Андерсон, ни его сценарист-дебютант Филип Эйснер ранее с фантастическим жанром дел не имели, пребывая в статусе дилетантов, они разумно решили не мудрствовать лукаво и позаимствовать сюжет у более опытных коллег. И позаимствовали. Причем так, что обнаружить в окончательном замысле что-то от Андерсона-Эйснера так же сложно, как обнаружить ананасы и цуккини в оригинальном рецепте салата оливье.

Прием достаточно безобразный, но, как показывает практика, коммерчески успешный. И главное — юридически ненаказуемый.

Правда, в случае с «Горизонтом событий» (такая версия перевода все же более корректна с научной точки зрения) факир был пьян и фокус не удался.

Лента с треском провалилась в прокате, ибо австралиец Сэм Нил никогда звездой не был, а харизматичный Лоренс Фишберн только готовился обрить голову и торговать таблетками в «Матрице».

По количеству заимствований ужастик Андерсона даст фору любому фильму Мела Брукса или братьев Уэянс («Очень страшно кино»). С той лишь разницей, что последние намеренно цитировали в своих опусах чужие работы, ибо снимали пародии.

Андерсон же на полном серьезе копировал идеи предшественников, не особо заботясь о том, что конечный результат будет иметь форм-фактор винегрета.

В числе явных фаворитов по цитатам замечены: «2001 год: Космическая одиссея» Кубрика, «Солярис» Тарковского, «Чужой» Ридли Скотта, «Восставший из ада» Баркера и, конечно же, «Черная дыра» (1979) — культовый трэш Гэри Нельсона. Из последнего авторы «Горизонта событий» высосали почти все, что могли.

Итак, напихав кусков из разных работ, а то и шедевров, авторы начали шить свое лоскутное одеяло. Само собой, кривыми руками, ибо итоговый жанр фильма определить невозможно.

Начинается все по лекалу потерянных в космосе астронавтов, ведомых умным, но коварным ученым, преследующим собственные, никому непонятные (в том числе и зрителю) цели.

Затем картина резко разворачивается на 180 градусов и впадает в мистику, где вместо пресловутых инопланетян (от которых Андерсон наотрез отказался) — таинственный портал и галлюцинации у всего экипажа.

Ближе к финалу создатели почувствовали кураж и вознамерились по количеству пролитого кетчупа Heinz опередить своего соотечественника Клайва Баркера. «Горизонт событий» в концовке окончательно слился в трэшевый ужастик, оставив за бортом добрую часть спасательной команды и всякий здравый смысл.

Хуже всего пришлось Сэму Нилу, из которого смастерили нечто среднее между Доктором Калигари, андроидом Эшем и злодеем-сенобитом. Мотивация у данного персонажа отсутствует напрочь, ибо нельзя одновременно любить родину и гадить под каждым кустом. То он добрый доктор Айболит, то доктор Зло.

А когда у главного героя сносит башню по пять раз на день, то остальным приходится лишь молча соответствовать. Космонавты в нашем случае — безликие и аморфные куклы, ведомые бредом под названием сценарий.

И лица вроде узнаваемые (кроме Фишберна здесь имеется Кэтлин Куинлен («Авария»), Джоэли Ричардсон («101 далматинец») и Джейсон Айзекс («Патриот»)), но деревянные и в печали, и в радости.

В общем, если очень хочется, то можно. Фантастический жанр нынче находится в упадке, Голливуд все больше специализируется по комиксам, комедиям и бытовым ужастикам. Однако иногда, а картина Андерсона для этого «иногда» подходит идеально, лучше пересмотреть проверенный шедевр, чем пытаться вникнуть в дебри сознания бесталанных киношников, умеющих лишь портить чужие идеи.

рецензии, кинопрокат, Голливуд, фильмы, фантастика, кино

Источник: https://ShkolaZhizni.ru/culture/articles/55972/

Что мы можем увидеть, падая в черную дыру? Физики знают ответ!

Черные дыры — пожалуй, самые загадочные объекты во Вселенной. Они настолько плотные, что сила тяготения не позволяет ничему, даже свету, покинуть пределы черной дыры. Физики обнаружили множество черных дыр, от небольших до сверхмассивных, массой в миллионы или миллиарды солнечных.

Важное свойство горизонта событий — что свет не может его преодолеть — создает границу в пространстве: как только вы ее пересечете, вы обречены оказаться в сингулярности. Но что вы увидите, падая в черную дыру? Погаснет ли свет или останется? Физики знают ответ, и он вам понравится.

В центре нашей собственной галактики мы увидели движение звезд вокруг центральной точки массы в 4 миллиона солнечных масс, не испускающей никакого света. Этот объект — Sagittarius A* — однозначный кандидат в черную дыру, которого мы можем определить напрямую, измеряя звезды на его орбите.

Но есть несколько очень странных вещей, которые происходят, когда вы приближаетесь к горизонту черной дыры, и они становятся еще страннее, когда вы его пересекаете. Есть причина, по которой вы, преодолев этот невидимый барьер, уже не сможете никогда его покинуть.

И неважно, какой класс черной дыры вас засосал, какой космический корабль пытается вас оттуда унести или что-то еще. Общая теория относительности — серьезная штука, особенно когда дело доходит до черных дыр.

Читайте также:  Космологическая постоянная - все о космосе

Причина связана с величайшим достижением Эйнштейна: она связана с тем, КАК черная дыра искривляет пространство-время.

Когда вы находитесь очень далеко от черной дыры, ткань пространства изогнута меньше. Фактически, когда вы находитесь очень далеко от черной дыры, ее гравитация неотличима от любых других масс, будь то нейтронная звезда, обычная звезда или просто диффузное облако газа.

Пространство-время может быть искривлено, но все, что вы можете определить издалека, это присутствие массы, без данных о распределении этой массы.

Но если взглянуть своими глазами, то вместо облака газа, звезды или нейтронной звезды, будет абсолютно черная сфера в центре, не излучающая никакого света.

Эта сферическая область, известная как горизонт событий, — это не что-то физическое, а скорее область пространства определенного размера, из которой не может сбежать свет.

Можно было бы предположить, что издалека размер черной дыры кажется таким, каким является на самом деле.

Другими словами, если вы приблизитесь к черной дыре, она будет выглядеть как абсолютно черная дыра на фоне космоса, по границам которой искажается свет.

Для черной дыры массой с Землю эта сфера будет крошечной: порядка 1 сантиметра в радиусе; а для черной дыры массой с Солнце эта сфера будет порядка 3 километров в радиусе. Если масштабировать массу (и размер) до сверхмассивной черной дыры — вроде той, что в центре нашей галактики — вы получите размер планетарной орбиты или гигантскую красную звезду вроде Бетельгейзе.

Что же произойдет, когда вы приблизитесь и в конце концов попадете в черную дыру?

С большого расстояния геометрия увиденного вами будет соответствовать вашим ожиданиям и расчетам.

Но по мере продвижения в вашем идеально сконструированном и неразрушимом космическом аппарате, вы начнете замечать нечто странное, подходя к черной дыре.

Если разделить расстояние между вами и звездой надвое, угловой размер звезды будет казаться вдвое больше. Если вы сократите расстояние до четверти, он будет в четыре раза больше. Но черные дыры другие.

В отличие от всех других объектов, к которым вы привыкли, которые чем ближе, тем крупнее кажутся, черная дыра растет в размерах гораздо быстрее, благодаря невероятной кривизне пространства.

С нашей точки зрения на Земле, черная дыра в галактическом центре будет казаться крошечной, ее радиус будет измеряться в микродуговых секундах.

Но по сравнению с наивным радиусом, который вы рассчитываете в рамках ОТО, он будет казаться на 150% больше из-за искривления пространства.

Если вы приблизитесь к нему, к моменту, когда горизонт событий будет размером с полную Луну на небе, он будет в четыре раза больше этого. Причина, конечно, в том, что пространство-время искривляется все сильнее и сильнее, когда вы приближаетесь к черной дыре.

И наоборот, наблюдаемая площадь черной дыры растет все больше и больше; к моменту, когда вы будете в нескольких шварцшильдовских радиусах от нее, черная дыра вырастет до таких размеров, что заслонит собой практически весь передний обзор корабля. Обычные геометрические объекты так себя не ведут.

Когда вы будете приближаться к самой внутренней стабильной круговой орбите — которая составляет 150% радиуса горизонта событий — вы заметите, что передний обзор на вашем корабле станет абсолютно черным.

Как только вы пересечете эту точно, даже позади вас все начнет погружаться в темноту. Опять же, это связано с тем, как пути света из разных точек движутся в этом сильно искривленном пространстве-времени.

В этот момент, если вы не пересекли горизонт событий, вы все еще можете выйти. Если вы приложите достаточное ускорение прочь от горизонта событий, вы сможете покинуть его гравитацию и вернуться в безопасное пространство-время подальше от черной дыры. Ваши гравитационные датчики подскажут вам, где нисходящий градиент в направлении центра сменяется плоскостью, где можно увидеть звездный свет.

Но если вы продолжите падение к горизонту событий, вы в конечном итоге увидите, как звездный свет сжимается до крошечной точки позади вас, меняя цвет на синий из-за гравитационного синего смещения.

В последний момент, когда вы пересечете горизонт событий, эта точка станет красной, белой, а потом синей, поскольку космический микроволновый и радиоволновой фоны сдвинутся в видимую часть спектра.

И затем… будет тьма. Ничего. Изнутри горизонта событий никакой свет из внешней Вселенной не сможет попасть к вашему кораблю.

Теперь вы вспомните о мощных двигателях своего корабля и задумаетесь, как можно было бы сбежать с их помощью из этой ловушки.

Вы вспомните, в каком направлении лежала сингулярность, и попробуете определить гравитационный градиент по направлению к ней. Это при условии, что позади вас или перед вами не будет никакой другой материи или света.

Что удивительно, даже если вместе с вами за горизонт событий попадет много света — вы будете видеть «половину» видимой Вселенной — на борту с вами будут также и гравитационные датчики. И как только вы пересечете горизонт событий, со светом или без, произойдет кое-что странное.

Ваши датчики подскажут вам, что гравитационный градиент, который уходит в сторону сингулярности, будет повсюду, во всех направлениях. Даже в противоположном сингулярности направлении.

Как такое возможно?

А вот так, потому что вы за горизонтом событий, прямо в нем. Любой луч света, который вы сейчас излучите, отправится в направлении сингулярности; вы слишком глубоко в нутре черной дыры, чтобы он мог попасть куда-нибудь еще.

Сколько же времени необходимо после преодоления горизонта в сверхмассивной черной дыре, чтобы оказаться в ее центре? Верьте или нет, несмотря на то что горизонт событий может быть световым часом в диаметре в нашей системе отсчета, для достижения сингулярности потребуется всего около 20 секунд. Сильно искривленное пространство — страшная штука.

Хуже всего то, что любое ускорение приблизит вас к сингулярности еще быстрее. Увеличить время выживания на этом этапе невозможно. Сингулярность существует во всех направлениях, куда ни посмотри. Сопротивление бесполезно.

hi-news.ru

Источник: http://nmir.net/kosmos/tajny-kosmosa/2492-padat-v-chernuu-dyru.html

Горизонт Вселенной

В СЛОВАРЕ, ИЗДАННОМ В 1910 ГОДУ, ГОРИЗОНТ ОПРЕДЕЛЯЛСЯ КАК «ОКРУЖНОСТЬ КРУГА… ДАЛЬШЕ КОТОРОГО НИЧЕГО НЕ ВИДНО». НО ЗА ПРОШЕДШИЙ ВЕК НАУКА РАСШИРИЛА ЭТО ПОНЯТИЕ ДО МАСШТАБОВ ВСЕЛЕННОЙ.

Привычный зрительный горизонт, обусловленный шарообразностью нашей планеты, статичен и не зависит от времени наблюдения (к тому же на километровых дистанциях конечность скорости света не принимают в расчет). Но в применении ко Вселенной понятие горизонта теряет былую простоту.

Космическое пространство не двумерно, как земной рельеф, а трехмерно, к тому же Вселенная расширяется, причем с переменной скоростью. Более того, применительно к космическим масштабам необходимо помнить о конечности скорости света.

ДВА ГОРИЗОНТА

Понятие космологического горизонта ввели в науку в начале 1950-х годов в связи с разработкой теории горячей Вселенной. А в 1956 году крупный специалист по ОТО Вольфганг Риндлер из Корнеллского университета уточнил и расширил эту концепцию в статье «Visual horizons in world-models».

Риндлер предложил по-разному рассматривать космические объекты длительного существования, такие как звезды и галактики с их протяженными мировыми линиями (кривыми в пространстве-времени, описывающими движение тела), и кратковременные эффекты, такие, например, как взрывы сверхновых, которым соответствуют небольшие фрагменты таких линий, а в пределе — просто точки.

Корректно описать наблюдаемость объектов обоих типов можно лишь при помощи различных горизонтов.

ЗАГЛЯНУТЬ ЗА ГОРИЗОНТ

Границу между наблюдаемыми и ненаблюдаемыми мировыми линиями Риндлер назвал горизонтом частиц, а аналогичную границу между точками этих линий — горизонтом событий.

Наблюдаемая часть (горизонт частиц) стационарной вселенной, имеющей начало, постоянно расширяется со скоростью света. Во вселенной без начала, но с «концом света», где обрываются все мировые линии, горизонт событий отделяет события, которые наблюдатель никогда не сможет увидеть.

ПРОСТЫЕ ГОРИЗОНТЫ

Согласно стандартной космологической модели, мы живем в однородной изотропной Вселенной. Отсюда следует, что горизонт частиц представляет собой сферическую поверхность, в центре которой находится наблюдатель.

Внутренность сферы заполнена долгоживущими космическими объектами (скажем, галактиками), чей испущенный в прошлом свет приходит к наблюдателю. С внешней стороны этой сферы находятся галактики, которые наблюдатель не может видеть ни на каких этапах их истории, предшествовавших моменту наблюдения.

Таким образом, горизонт частиц отсекает наблюдаемую зону Вселенной от ненаблюдаемой, то есть по своей сути не слишком отличается от географического горизонта.

А вот горизонт событий не столь нагляден: он разделяет события, которые наблюдатель может увидеть в тот или иной момент времени в своем собственном будущем, от событий, увидеть которые ему никогда не дано. В некоторых космологических моделях присутствуют оба горизонта, в некоторых — только один из них, а в некоторых горизонтов нет вовсе.

СТАТИЧНЫЙ МИР

Для простоты рассмотрим горизонты безграничной статичной вселенной. В ньютоновском мире с бесконечной скоростью света (и, как следствие, абсолютным временем), который не имеет ни начала, ни конца во времени, то есть существует вечно, наблюдатель, где бы он ни находился, всегда может видеть все светила без единого исключения.

Поэтому в таком мире нет ни горизонта частиц, ни горизонта событий (собственно говоря, там нет и самих событий!) — он дважды безгоризонтен. Теперь допустим, что в галактиках иногда взрываются сверхновые. Если скорость света бесконечна, эти вспышки мгновенно достигают наблюдателя, так что двойная безгоризонтность по-прежнему имеет место.

Однако она сохраняется и при конечной скорости света! В самом деле, допустим, что какая-то галактика на короткое время увеличила блеск из-за взрыва сверхновой. В вечной и статичной вселенной свет этой вспышки рано или поздно придет к любому наблюдателю.

Отсюда следует, что в этом мире нет сигналов, которые наблюдатель никогда не сможет увидеть, и, следовательно, нет горизонта событий (разумеется, там по-прежнему нет и горизонта частиц).

Далее рассмотрим гипотетическую статичную вселенную с началом во времени. В таком мире горизонт частиц представляет собой сферу, расширяющуюся со скоростью света.

Если через 5 млрд лет после сотворения этого мира в какой-нибудь из галактик появится наблюдатель, его горизонт частиц окажется сферой радиусом в 5 млрд световых лет.

Еще через миллиард лет радиус составит б млрд световых лет, через 2 млрд — 7 млрд. Этот мир остается неизменным, но его наблюдаемая часть постоянно расширяется.

РАЗНЫЕ ГОРИЗОНТЫ

    Замкнутая нестатичная вселенная Фридмана с положительной кривизной пространства возникает из точечной сингулярности с бесконечной плотностью энергии, достигает в своем расширении предельного размера, а затем сокращается и снова схлопывается в сингулярность.

Такая вселенная обладает и горизонтом частиц, и горизонтом событий.
Во вселенной Эйнштейна — де Ситтера есть горизонт частиц, но нет горизонта событий, поскольку скорость ее расширения с течением времени стремится к нулю, то есть в бесконечно отдаленном будущем она станет статичной.

Это справедливо и для любой открытой фридмановской вселенной, скорость расширения которой в бесконечном будущем стремится к конечному ненулевому пределу.

А вот для не имеющей ни начала, ни конца «антигравитационной» вселенной де Ситтера справедливо обратное — там отсутствует горизонт частиц, но имеется горизонт событий.

РАЗНЫЕ ГОРИЗОНТЫ

И наконец, предположим, что наша воображаемая статичная вселенная не имеет начала, но имеет конец, где обрываются все мировые линии, в том числе и линия наблюдателя. Он по-прежнему видит все галактики, так что горизонт частиц в этом мире отсутствует. Однако наблюдатель теперь уже может заметить только часть изменений в свечении этих галактик.

Он увидит вспышку сверхновой, взорвавшейся в галактике, отдаленной от него на 10 млн световых лет, если взрыв случился за 11 млн лет до конца света. Но если сверхновая вспыхнула за 9 млн лет до этого печального финала, наблюдатель даже в последний момент своего существования о ней не узнает — просто не успеет.

Следовательно, в таком мире имеется горизонт событий.
Как ни примитивна модель статичной вселенной, она позволяет уяснить ключевые черты обоих горизонтов. За пределами горизонта частиц лежат мировые линии, которые в данный момент не могут наблюдаться ни в одном из своих предшествующих фрагментов.

А вне горизонта событий пребывают события, которые наблюдатель не способен узреть за все время своего существования.

БЛИЖЕ К РЕАЛЬНОСТИ

Наша Вселенная, как известно, отнюдь не статична — она расширяется, причем в течение последних пяти-шести миллиардов лет даже с ускорением (считается, что оно порождено ненулевой энергией физического вакуума, получившей не особенно удачное, но эффектное название — темная энергия).

При этом она обладает плоской геометрией, поскольку полная плотность ее энергии равна критическому значению, при котором кривизна космического пространства зануляется.

Если бы это равенство имело место в отсутствие темной энергии, прошлая, нынешняя и последующая динамика Вселенной (за исключением ее самого раннего этапа) соответствовали бы модели Эйнштейна — де Ситтера.

В НАШЕЙ ВСЕЛЕННОЙ для диаграммы космологических горизонтов (вверху) удобно использовать сопутствующие координаты, которые расширяются е унисон с расширением Вселенной (они подобны координатной сетке на надувном глобусе: широта и долгота каждой точки не меняются, а расстояние между любой парой точек увеличивается с ростом радиуса в соответствии с масштабным фактором). Вверху — половинка такой диаграммы. А если использовать для шкалы времени конформное время (время фотона, испущенного космическим объектом и летящего на мировом конусе), то диаграмма приобретает простой классический вид с прямыми горизонтами и световым конусом.

ДИАГРАММЫ КОСМОЛОГИЧЕСКИХ ГОРИЗОНТОВ

Согласно закону Хаббла, радиальные скорости далеких галактик пропорциональны расстоянию до них с коэффициентом, который называется параметром Хаббла Н (он зависит от возраста Вселенной и в настоящую эпоху обозначается Н0). Поэтому на некоторой дистанции, равной с/H, скорость галактического разбегания становится равной скорости света.

Такое растояние называют дистанцией Хаббла (или радиусом хаббловской сферы), и в нашу эпоху оно приблизительно равно 14 млрд световых лет. Относительно центра сферы скорость расширения пространства внутри нее меньше световой, а вне ее — больше.

Очень важно, что радиус сферы Хаббла в общем случае вовсе не равен радиусу наблюдаемой части мироздания, который, по определению, есть радиус горизонта частиц. Это наглядно представлено в приведенном выше примере статичной вселенной с одновременно вспыхнувшими галактиками.

Поскольку там параметр Хаббла равен нулю, хаббловский радиус бесконечен. А вот радиус горизонта частиц пропорционален возрасту Вселенной и при любых конечных сроках ее жизни тоже конечен. Рассмотрим вспышки сверхновых, одновременно взорвавшихся в двух разных галактиках.

Пусть одна из галактик расположена внутри сферы Хаббла наблюдателя, а вторая — вне ее. Наблюдатель увидит первую вспышку и не увидит второй, поскольку расширяющееся пространство «уносит» с собой ее фотоны со скоростью больше световой.

На самой сфере Хаббла световые кванты как бы вморожены в пространство, которое расширяется там со световой скоростью, и поэтому она становится еще одним горизонтом — горизонтом фотонов. Если расширение вселенной замедляется, то радиус сферы Хаббла возрастает, поскольку он обратно пропорционален уменьшающемуся хаббловскому параметру.

В таком случае по мере старения вселенной эта сфера охватывает все новые и новые области пространства и впускает все новые и новые световые кванты. С течением времени наблюдатель увидит галактики и внутригалактические события, которые ранее находились вне его фотонного горизонта. Если же расширение вселенной ускоряется, то радиус хаббловской сферы, напротив, сокращается.

Конкретная скорость расширения сферы Хаббла зависит от деталей эволюции вселенной. Например, в мире Эйнштейна — де Ситтера она равна полутора световым скоростям.

Поскольку пространство на хаббловской сфере раздувается со световой скоростью, разница между темпами расширения фотонного горизонта и расширения пространства равна половине скорости света.

В то же время горизонт частиц во вселенной Эйнштейна — де Ситтера расширяется вдвое быстрее фотонного горизонта (следовательно, со скоростью, равной трем световым).

С ГЛАЗ ДОЛОЙ

Из-за конечности скорости света наблюдатель видит небесные объекты такими, какими они были в более или менее отдаленном прошлом. За пределами горизонта частиц лежат галактики, которые в данный момент не наблюдаются ни на едином этапе их предшествующей эволюции.

Это означает, что их мировые линии в пространстве-времени нигде не пересекают поверхность, по которой распространяется свет, приходящий к наблюдателю с момента рождения Вселенной (она называется ретроградным световым конусом). Внутри горизонта частиц расположены галактики, чьи мировые линии в прошлом пересеклись с этой поверхностью.

Именно эти галактики и составляют часть Вселенной, в принципе доступную наблюдению в данный момент времени. Ретроградный световой конус любого наблюдателя во Вселенной, расширяющейся после Большого взрыва, сходится на этой начальной сингулярности и охватывает конечный объем. Отсюда еще раз следует, что наблюдатель может видеть лишь конечную часть своего мира.

Таким образом, нам не дано знать, какова Вселенная за пределами нынешнего горизонта частиц. Некоторые теории ранней Вселенной утверждают, что очень далеко за этим горизонтом она совсем не похожа на то, что мы видим.

Этот тезис вполне научен, поскольку он вытекает из вполне разумных вычислений, однако его нельзя ни опровергнуть, ни подвердить с помощью астрономических наблюдений, доступных в наше время, Более того, если пространство и дальше будет расширяться с ускорением, его нельзя будет проверить и в сколь угодно отдаленном будущем.

В статичной вселенной с фиксированным началом радиус горизонта частиц равен произведению ее возраста на скорость света. В нашей Вселенной он гораздо больше, поскольку расширяющееся пространство увлекает за собой световые кванты.

Для определения этого радиуса требуется знание всей динамики Вселенной, в том числе и в фазе инфляции, которым наука пока не располагает.

По современным данным, масштабный фактор Вселенной в ходе инфляции увеличился как минимум в 1027 раз, но эта оценка может быть сильно занижена (стандартная космологическая модель вообще не описывает фазу инфляции и отсчитывает возраст Вселенной от ее завершения).

ПРОШЛОЕ И БУДУЩЕЕ

    «Над проблемами горизонта я задумался еще в аспирантуре, причем даже не по собственной инициативе, — рассказывает профессор Вольфганг Риндлер, который до сих пор преподает физику в Техасском университете в Далласе.

— Тогда была в большой моде теория Вселенной, известная как космология стабильного состояния — Steady State Cosmology. Мой научный руководитель ввязался в ожесточенный спор с авторами этой теории и предложил мне разобраться в существе разногласий.

Я не стал отказываться от предложенной задачи, и в результате появилась моя работа о космологических горизонтах. Из нее, в частности, следовало, что в модели стабильного состояния есть только горизонт событий, как и во вселенной де Ситтера».

По словам профессора Риндлера, существует очень понятная интерпретация обоих горизонтов нашего мира: «Горизонт событий образован световым фронтом, который в пределе сойдется на нашей Галактике, когда возраст Вселенной возрастет до бесконечности.

Напротив, горизонт частиц соответствует световому фронту, испущенному в момент Большого взрыва. Фигурально выражаясь, горизонт событий очерчивается самым последним из световых фронтов, достигающих нашей Галактики, а горизонт частиц — самым первым.

Из такого определения становится понятным, что горизонт частиц задает максимальное расстояние, с которого в нашу нынешнюю эпоху можно наблюдать произошедшее в прошлом. Горизонт событий, напротив, фиксирует максимальную дистанцию, откуда можно получить информацию о бесконечно отдаленном будущем. Это действительно два разных горизонта, которые необходимы для полного описания эволюции мироздания».

ПРОШЛОЕ И БУДУЩЕЕ

В мире Эйнштейна — де Ситтера радиус горизонта частиц равен удвоенному радиусу хаббловской сферы, который, в свою очередь, в полтора раза превышает произведение возраста этого мира и скорости света.

Легко посчитать, что в соответствии с этой моделью нынешний радиус горизонта частиц (и, следовательно, радиус наблюдаемой с Земли области космоса) составляет около 41 млрд световых лет, или 13 гигапарсек. Поскольку Вселенная в эпоху доминирования темной энергии вышла на ускоренное расширение, радиус ее горизонта частиц должен оказаться несколько больше.

Впрочем, учет темной энергии дает довольно близкое значение — 14 гигаперсек. Стоит напомнить, что наши телескопы не могут заглянуть в эпоху, когда космическое пространство было заполнено плазмой и не содержало свободных фотонов. Она завершилась через 380 000 лет после Большого взрыва.

Вселенная тогда эволюционировала практически точно по модели Эйнштейна — де Ситтера и продолжала это делать еще не менее 8 млрд лет. Позднее темная энергия внесла свои поправки, но пока что они увеличили горизонт событий не слишком сильно.

Если нынешняя плотность темной энергии в будущем не изменится, эволюция Вселенной постепенно начнет все больше и больше соответствовать модели де Ситтера.

В таком случае радиус горизонта событий с течением времени будет стремиться к предельному постоянному значению.

В очень далеком будущем все источники света, расположенные вне гравитационно связанной Местной группы галактик (к которой принадлежит и наш Млечный Путь), окажутся за пределами этого горизонта и навсегда станут невидимыми.

АЛЕКСЕЙ ЛЕВИН, «ПОПУЛЯРНАЯ МЕХАНИКА»

Источник

Источник: https://myopen.space/post/1798

Ссылка на основную публикацию