Каково общее устройство телескопа – все о космосе

Самые невероятные факты о телескопе «Хаббл»

Американский ученый Эдвин Пауэлл Хаббл стал широко известным благодаря открытию эффекта расширения Вселенной. Его до сих пор часто упоминают в своих статьях великие ученые. Хаббл — человек, в честь которого был назван радиотелескоп, иблагодаря которому произошла полная заменавсех ассоциаций и стереотипов.

Телескоп «Хаббл» — один из самых известных среди объектов, которые непосредственно связаны с космосом. Его можно с уверенностью считать настоящей автоматической орбитальной обсерваторией.

Этот космический гигант требовал немалого финансового вложения (ведь затраты на неземной телескоп превышали стоимость наземного в сотни раз), а также ресурсов и времени.

Исходя из этого два крупнейших агентства мира, такие как НАСА и Европейское космическое агентство (ЕКА), решили соединить свои возможности и сделать совместный проект.

В каком году он был запущен, уже давно не является секретной информацией. Запуск на земную орбиту состоялся 24 апреля 1990 года на борту шаттла “Дискавери«STS-31. Возвращаясь к истории, стоит упомянуть то, что год запускаизначально планировался другой.

Предполагаемой датой должен был стать октябрь 1986 года, но в январе того же года, произошла катастрофа «Челенджера» и все были вынуждены отложить запланированный запуск.С каждым месяцем простоя стоимость программы увеличивалась на 6 миллионов долларов.

Ведь не так просто сохранить в идеальном состоянии объект, который нужно будет отправить в космос. «Хаббл» был помещен в особое помещение, в котором была искусственно создана очищенная атмосфера, а также частично функционировали бортовые системы.

За время хранения, также некоторые приборы были заменены на более современные.

Когда запустили”Хаббл” все ожидали неимоверного триумфа, но не сразу все было так, как хотелось. Ученые столкнулись с проблемами уже с первых снимков. Было понятно, что на зеркале телескопа имеется дефект, и качество снимков отличалось от ожидаемого.

Также было не совсем понятно, сколько лет пройдет с момента обнаружения проблемы до ее решения.

Ведь было очевидным, что заменить главное зеркало телескопа непосредственно на орбите невозможно, а вернуть его на Землю чрезвычайно дорого, поэтому было принято решение о том, что нужно установить на него дополнительную аппаратуру и за счет нее скомпенсировать дефект зеркала.Так, уже в декабре 1993 года был отправлен шаттл «Индевор» с нужными конструкциями. Космонавты пять раз выходили в открытый космос и успешно смогли установить нужные детали на телескоп «Хаббл».

Что новое увидел в космосе телескоп? И какие открытиясмогло сделать человечество на основе снимков? Это одни из самых распространенных вопросов, задаваемых когда-либо учеными. Конечно, самые большие звезды, снятыетелескопом не остались без внимания.

А именно, благодаря уникальности телескопа, астрономы выявили одновременно девять огромных звезд (в звездном скоплении R136), масса которых больше чем в 100 раз превосходит массу Солнца.

Были обнаружены и звезды, масса которых превышает массу Солнца в 50 раз.

Также не осталось без внимания фото, где запечатлены двести безумно горячих звезд, которые в совокупности дают намтуманность NGC 604. Именно «Хаббл» смог заснять флуоресценцию туманности, которая была вызвана ионизированным водородом.

Говоря о теории большого взрыва, которая сегодня является одной из самых широко обсуждаемых и самой достоверной в истории происхождения Вселенной, стоит вспомнить о реликтовом излучении. Реликтовое излучениеявляется одним из ее основоположных доказательств. А вот еще одним стало космологическое красное смещение.

В совокупности получилось проявление эффекта Доплера. По нему тело видит предметы, которые к нему приближаются в синем цвете, а если они отдаляются, то становятся более красными.

Так, наблюдая за космическими объектами с телескопа «Хаббл», смещение было красным и на этом основании было сделано заключение о расширении Вселенной.

Рассматривая снимки с телескопа, одним из первых вы увидите Дальнее поле. На фото вы уже не разглядите звезды по отдельности — это будут целые галактики.И сразу же возникает вопрос: на какое расстояние видит телескоп и какой его крайний рубеж? Для того, чтобы ответить, как телескоп видит так далеко, нужно подробно рассмотреть конструкцию «Хаббла».

Технические характеристики телескопа

  1. Габаритные размеры всего спутника: 13,3 м — длина, масса около 11 тонн, но с учетом всех установленных приборов, его масса достигает 12,5 тонн и диаметр — 4,3 м.
  2. Форма точности ориентации может достигать 0,007 угловых секунд.

  3. Две двусторонние солнечные батареи мощностью 5 кВт, но есть еще 6 батарей, у которых емкость 60 ампер/часов.
  4. Все двигатели работают на гидразине.
  5. Антенна, которая способна принимать все данные со скоростью 1 кБ/с, а отдавать — 256/512 кБ/с.
  6. Основное зеркало, диаметр которого — 2,4 м, а также вспомогательное — 0,3 м.

    Материал главного зеркала — плавленое кварцевое стекло, которое не поддается тепловым деформациям.

  7. Какое увеличение, такое и фокусное расстояние, а именно 56,6 м.
  8. Кратность обращения —раз в полтора часа.
  9. Радиус сферы «Хаббла» —отношение скорости света к постоянной Хаббла.
  10. Характеристики излучения — 1050-8000 ангстрем.

  11. А вот на какой высотенад поверхностью Земли находится спутник, известно давно. Это 560 км.

Как устроен принцип работы телескопа «Хаббл»?

Принцип работы телескопа является рефлектором системы Ричи-Кретьена. Строение системы — это главное зеркало, которое вогнуто гиперболически, а вот его вспомогательное зеркало — выпукло гиперболически. Устройство, установленное в самом центре гиперболического зеркала называется окуляр. Поле зрения — около 4°.

Так кто же все-таки принимал участие в создании этого потрясающего телескопа, который не смотря на свой почтенный возраст, продолжает радовать нас своими открытиями?

История созданияуходит в далекие семидесятые года 20 века. Над самыми важными частями телескопа, а именно главным зеркалом работало несколько компаний. Ведь требования выдвигались достаточно жесткие, а результат планировалсяидеальным.

Так, компания PerkinElmer хотела использовать свои станки с новыми технологиями для достижения нужной формы. А вот компания Kodakподписала контракт, в котором предполагалось использование более традиционных методов, но уже для запасных деталей.

Работы по изготовлению начались еще в 1979 году, а полировка нужных деталей продолжалась до середины 1981 года. Даты были очень сдвинуты, и возник вопрос компетентности компании PerkinElmer, по итогам было перенесено запуск телескопана октябрь 1984 года.

Вскоре некомпетентность проявляласьвсе больше, и еще несколько раз переносилась дата запуска.История подтверждает, что одной из предполагаемых дат был сентябрь 1986 года, в то время как общий бюджет всего проекта вырос до 1,175 млрд. долл.

И напоследок, информацияо самых интересных и значимых наблюдениях телескопа «Хаббл»:

  1. Были обнаружены планеты, которые находятся вне Солнечной системы.
  2. Найдено огромное количество протопланетных дисков, которые располагаются вокруг звезд Туманности Ориона.
  3. Произошло открытие в изучении поверхности Плутона и Эриды. Были получены первые карты.
  4. Немаловажным является частичное подтверждение теории об очень массивных черных дырах, которые располагаются в центрах галактик.
  5. Было показано, что достаточно схожи по форме Млечный Путь и Туманность Андромеды имеют значительные отличии в их истории возникновения.
  6. Был однозначно установлен точный возраст нашей Вселенной. Он составляет 13,7 млдр. лет.
  7. Гипотезы относительно изотропности — также верны.
  8. В 1998 году были объединены исследования и наблюдения наземных телескопов и «Хаббла», и установлено, что в темной энергии ¾ содержания от полной плотности всей энергии Вселенной.

Изучение космических пространств продолжается…

Источник: https://1000sovetov.ru/article_samye-neveroyatnye-fakty-o-teleskope-khabbl

Устройство, назначение, принцип работы, типы и история телескопа

РЕФЕРАТ

по физике

на тему:

«Устройство, назначение, принцип работы, типы и история телескопа»

Работу выполнил:

ученик 8 v класса

Рижской шлолы Nr . 66

Юрий Круглов

РИГА

2005 год

Устройство телескопа

Телескоп любого типа имеет объектив и окуляр.

Линза, обращенная к объекту наблюдения, называется Объективом , а линза , к которой прикладывает свой глаз наблюдатель – Окуляр.

Может быть дополнительная лупа, которая позволяет приблизить глаз к фокальной плоскости и рассматривать изображение с меньшего расстояния, т. е. под большим углом зрения.

Таким образом, телескоп можно изготовить, расположив на одной оси одна за другой две линзы – объектив и окуляр. Для наблюдений близких земных предметов суммарное расстояние фокусов должно быть увеличено.Меняя окуляры, можно получить различные увеличения при одном и том же объективе.

Если линза толще посередине, чем на краях, она называется Собирающей или Положительной , в противном случае – Рассеивающей или Отрицательной.

Прямая, соединяющая центры этих поверхностей, называется Оптической осью линзы.

Если на такую линзу попадают лучи, идущие параллельно оптической оси, они, преломляясь в линзе, собираются в точке оптической оси, называемой Фокусом линзы. Расстояние от центра линзы до её фокуса называют фокусным расстоянием.

Чем больше кривизна поверхностей собирающей линзы, тем меньше фокусное расстояние. В фокусе такой линзы всегда получается действительное изображение предмета.

Tелескоп принято характеризовать угловым увеличением γ. В отличие от микроскопа, предметы, наблюдаемые в телескоп, всегда удалены от наблюдателя.

Назначение телескопа

Телескопы бывают самыми разными – оптические (общего астрофизического назначения, коронографы, телескопы для наблюдения искуственных спутников Земли), радиотелескопы, инфракрасные, нейтринные, рентгеновские. При всем своем многообразии, все телескопы, принимающие электромагнитное излучение, решают две основных задачи.

Первая задача телескопа – создать максимально резкое изображение и, при визуальных наблюдениях, увеличить угловые расстояния между объектами (звездами, галактиками и т. п.);собрать как можно больше энергии излучения, увеличить освещенность изображения объектов.

Вторая задача телескопа – увеличивать угол, под которым наблюдатель видит объект. Способность увеличивать угол характеризуется увеличением телескопа. Оно равно отношению фокусных расстояний объектива и окуляра

Принцип работа телескопа

Принцип работы телескопа заключается не в увеличении объектов, а в сборе света. Чем больше у него размер главного светособирающего элемента – линзы или зеркала, тем больше света он собирает.

Важно, что именно общее количество собранного света в конечном счете определяет уровень детализации видимого – будь то удаленный ландшафт или кольца Сатурна.

Хотя увеличение, или сила для телескопа тоже важно, оно не имеет решающего значения в достижении уровня детализации.

Типы телескопов

Все телескопы подразделяются на три оптических класса.

Преломляющие телескопы, или рефракторы , в качестве главного светособирающего элемента используют большую линзу-объектив.

Рефракторы всех моделей включают ахроматические (двухэлементные) объективные линзы – таким образом сокращается или практически устраняется ложный цвет, который влияет на получаемый образ, когда свет проходит через линзу.

При создании и установке больших стеклянных линз возникает ряд трудностей; кроме того, толстые линзы поглощают слишком много света.

Самый большой рефрактор в мире, имеющий объектив с линзой диаметром в 101 см, принадлежит Йеркской обсерватории.

Все большие астрономические телескопы представляют собой рефлекторы . Рефлекторные телескопы популярны и у любителей, поскольку они не так дороги, как рефракторы.

Это отражающие телескопы, и для сбора света и формирования изображения в них используется вогнутое главное зеркало.

В рефлекторах ньютоновского типа, маленькое плоское вторичное зеркало отражает свет на стенку главной трубы.

Зеркально-линзовые (катадиоптрические) телескопы используют как линзы, так и зеркала, за счет чего их оптическое устройство позволяет достичь великолепного качества изображения с высоким разрешением, при том, что вся конструкция состоит из очень коротких портативных оптических труб.

История телескопа

Первый телескоп был построен в 1609 году итальянским астрономом Галилео Галилеем. Телескоп имел скромные размеры (длина трубы 1245 мм, диаметр объектива 53 мм, окуляр 25 диоптрий), несовершенную оптическую схему и 30-кратное увеличение.

Однако он позволил сделать целую серию замечательных открытий (фазы Венеры, горы на Луне, спутники Юпитера, пятна на Солнце, звезды в Млечном Пути). Очень плохое качество изображения в первых телескопах заставило оптиков искать пути решения этой проблемы.

Оказалось, что увеличение фокусного расстояния объектива значительно улучшает качество изображения.

В 1663 году Грегори создал новую схему телескопа-рефлектора. Грегори первым предложил использовать в телескопе вместо линзы зеркало.

Первый телескоп-рефлектор был построен Исааком Ньютоном в 1668 году. Схема, по которой он был построен, получила название «схема Ньютона».. Длина телескопа составляла 15 см.

В 1672 году Кассегрен предложил схему двухзеркальной системы, вскоре ставшую наиболее популярной. Первое зеркало было параболическим, второе имело форму выпуклого гиперболоида и располагалось перед фокусом первого.

В настоящее время практически все телескопы являются зеркальными.

Самый большой в мире зеркальный телескоп имени Кека имеет диаметр 10 м и находится на Гавайских островах. В России на Кавказе работает телескоп размером 6 м.

В двадцатом веке астрономы сделали много шагов в изучении вселенной.

Эти шаги были бы невозможны без использования больших и сложных телескопов, расположенных на высокогорных лабораториях и управляемых большим количеством квалифицированных специалистов.

Источник: http://MirZnanii.com/a/321055/ustroystvo-naznachenie-printsip-raboty-tipy-i-istoriya-teleskopa

Как устроен телескоп

ПодробностиКатегория: ФотометрияОпубликовано 28.02.2015 20:35Просмотров: 3350

Телескоп – прибор, с помощью которого наблюдают удалённые объекты. В переводе с греческого «телескоп» означает «далеко» и «наблюдаю».

Для чего же нужен телескоп?

Кто-то думает, что телескоп увеличивает объекты, а кто-то полагает, что он их приближает. Ошибаются и те, и другие. Главная задача телескопа – получить информацию о наблюдаемом объекте, собирая  электромагнитное излучение.

Электромагнитное излучение – это не только видимый свет. К электромагнитным волнам относятся ещё и радиоволны, терагерцовое и инфракрасное излучение, ультрафиолетовое, рентгеновское и гамма-излучение. Телескопы созданы для всех диапазонов электромагнитного спектра.

Оптический телескоп

Главная задача телескопа – увеличить угол зрения, или видимый угловой размер удалённого объекта.

Угловым размером называют угол между линиями, соединяющими диаметрально противоположные точки наблюдаемого объекта и глаз наблюдателя. Чем дальше находится наблюдаемый объект, тем меньшим будет угол зрения.

Мысленно соединим прямыми линиями две противоположные точки стрелы башенного крана с нашим глазом. Полученный угол и будет углом зрения, или угловым размером.

Проделаем такой же эксперимент с краном, стоящим в соседнем дворе. Угловой размер в этом случае будет гораздо меньше, чем в предыдущем. Все объекты кажутся нам большими или маленькими в зависимости от угловых размеров.

И чем дальше расположен объект, тем меньшим будет его угловой размер.

Оптический телескоп представляет собой систему, которая изменяет угол наклона оптической оси параллельного пучка света. Такая оптическая система называется афокальной. Её особенность заключается в том, что световые лучи поступают в неё параллельным пучком, а выходят таким же параллельным пучком, но уже под другими углами, отличающимися от углов наблюдения невооружённым глазом.

Афокальная система состоит из объектива и окуляра. Объектив направлен на наблюдаемый объект, а окуляр обращён к глазу наблюдателя. Их располагают таким образом, чтобы  передний фокус окуляра совпадал с задним фокусом объектива.

Оптический телескоп собирает и фокусирует электромагнитное излучение видимого спектра. Если в его конструкции используются только линзы, такой телескоп называется рефрактором, или диоптрическим телескопом.

Если же только зеркала, то его называют рефлектором, или катаприческим телескопом. Существуют оптические телескопы смешанного типа, в составе которых есть и линзы, и зеркала.

Их называют зеркально-линзовыми, или катадиоптрическими.

Прообразом телескопа можно считать зрительную, или подзорную, трубу – оптический прибор для наблюдения за объектами, находящимися на дальнем расстоянии от наблюдателя.

«Классическая» подзорная труба, которой пользовались ещё во времена парусного флота, состояла из объектива и окуляра. Объектив представлял собой положительную собирающую линзу, которая создавала действительное изображение объекта. Увеличенное изображение рассматривалось наблюдателем в окуляр – отрицательную рассеивающую линзу.

Чертежи простейшего оптического телескопа были созданы ещё Леонардо до Винчи в 1509 г. Автором зрительной трубы считают голландского оптика Иоанна Липперсгея, который продемонстрировал своё изобретение в Гааге в 1608 г.

В телескоп зрительную трубу превратил Галилео Галилей в 1609 г. Прибор, созданный им, имел объектив и окуляр и давал 3-хкратное увеличение. Позднее Галилей создал телескоп с 8-кратным увеличением. Но его конструкции имели очень большие размеры. Так, диаметр объектива у телескопа с 32-кратным увеличением был равен 4,5 м, а сам телескоп имел длину около метра.

Название «телескоп» приборам Галилея предложил дать греческий математик Джованни Демизиани в 1611 г.

Именно Галилей первым направил телескоп в небо и увидел пятна на Солнце, горы и кратеры на Луне, рассмотрел звёзды в Млечном пути.

Труба Галилея – пример простейшего телескопа-рефрактора. Объективом в нём служит собирающая линза. В фокальной плоскости (перпендикулярной оптической оси и проходящей через фокус) получается уменьшенное изображение рассматриваемого предмета.

Окуляр, представляющий собой рассеивающую линзу, даёт возможность видеть увеличенное изображение. Труба Галилея даёт слабое увеличение удалённого объекта.

В современных телескопах не используется, но подобная схема применяется в театральных биноклях.

В 1611 г. немецкий учёный Иоганн Кеплер придумал более совершенную конструкцию. Вместо рассеивающей линзы он поместил в окуляр собирающую линзу. Изображение получалось перевёрнутым.

Это создавало неудобства для наблюдения наземных объектов, а для космических объектов это было вполне приемлемо. В таком телескопе за фокусом объектива имелось промежуточное изображение, В него можно было встроить измерительную шкалу или фотопластинку.

Такой тип телескопа сразу же нашёл своё применение в астрономии.

В телескопах-рефлекторах собирающим элементом вместо линзы служит вогнутое зеркало, задняя фокальная плоскость которого совмещена с передней фокальной плоскостью окуляра.

Зеркальный телескоп изобрёл Исаак Ньютон  в 1667 г. В его конструкции главное зеркало собирает параллельные световые лучи. Чтобы наблюдатель не перекрыл собой световой поток, на пути отражённых лучей ставят плоское, зеркало, которое отклоняет их от оптической оси. Изображение рассматривают в окуляр.

Вместо окуляра можно разместить фотоплёнку или светочувствительную матрицу, которая преобразует проецируемое на неё изображение в аналоговый электрический сигнал или в цифровые данные.

В зеркально-линзовых телескопах объективом служит сферическое зеркало, а система линз компенсирует аберрации – погрешности изображения, причиной которых служит отклонение светового луча от идеального направления. Они существуют в любой реальной оптической системе. В результате аберраций изображение точки размывается и становится нечётким.

Оптические телескопы используют астрономы для наблюдения за небесными светилами.

Но Вселенная посылает на Землю не только свет. Из космоса к нам приходят радиоволны, рентгеновское и гамма-излучение.

Радиотелескоп

Этот телескоп предназначен для приёма радиоволн, излучаемых небесными объектами в Солнечной системе, Галактике и Мегагалактике, определения их пространственной структуры, координат, интенсивности излучения и спектра. Его главные элементы – принимающая антенна и очень чувствительный приёмник – радиометр.

Антенна способна принимать миллиметровые, сантиметровые, дециметровые и метровые волны. Чаще всего это зеркальный отражатель параболической формы, в фокусе которого находится облучатель.

Это устройство, в котором собирается радиоизлучение, направленное зеркалом. Далее это излучение передаётся на вход радиометра, где усиливается и преобразуется в форму, удобную для регистрации.

 Это может быть аналоговый сигнал, который фиксируется самописцем, или цифровой сигнал, записывающийся на жёсткий диск.

Чтобы построить изображение наблюдаемого объекта, радиотелескоп измеряет энергию излучения (яркость) в каждой его точке.

Космические телескопы

Атмосфера Земли пропускает оптическое излучение, инфракрасное и радиоизлучение. А ультрафиолетовое и рентгеновское излучения атмосферой задерживается. Поэтому наблюдать их можно наблюдать только из космоса, установив на искусственных спутниках Земли, космических ракетах или орбитальных станциях.

Рентгеновские телескопы предназначены для наблюдения объектов в рентгеновском спектре, поэтому их устанавливают на искусственных спутниках Земли или космических ракетах, так как земная атмосфера такие лучи не пропускает.

Рентгеновские лучи испускаются звёздами, скоплениями галактик и чёрными дырами.

Функции объектива в рентгеновском телескопе выполняет рентгеновское зеркало. Так как рентгеновское излучение почти полностью проходит через материал или поглощается им, то обычные зеркала в рентгеновских телескопах применять нельзя. Поэтому для фокусировки лучей чаще всего используют зеркала скользящего, или косого, падения, сделанные из металлов.

Кроме рентгеновских телескопов созданы ультрафиолетовые телескопы, работающие в ультрафиолетовом излучении.

Гамма-телескопы

Не все гамма-телескопы размещаются на космических объектах. Существуют наземные телескопы, изучающие космическое гамма-излучение сверхвысоких энергий.

Но как зафиксировать гамма-излучение на поверхности Земли, если оно поглощается атмосферой? Оказывается, космические гамма-фотоны сверхвысоких энергий, попав в атмосферу, «выбивают» из атомов вторичные быстрые электроны, которые являются источниками фотонов. Возникает черенковское свечение, которое фиксируется телескопом, находящимся на Земле.

Источник: http://ency.info/materiya-i-dvigenie/fotometriya/398-kak-ustroen-teleskop

Телескопы — принцип работы

Представьте человеческий глаз диаметром 5 см. При этом вытянутый от зрачка к сетчатке на полметра. Примерно так устроен телескоп. Он работает как большое глазное яблоко. Наш глаз по сути – большая линза.

Сами по себе предметы он не видит, а улавливает отраженный от них свет (поэтому в полной темноте мы ничего не видим). Свет попадает через хрусталик на сетчатку, импульсы передаются в мозг, и мозг формирует картинку. У телескопа линза намного больше, чем наш хрусталик.

Поэтому она собирает свет от удаленных предметов, которые глаз просто не улавливает.

Принцип действия у всех телескопов одинаковый, а вот строение бывает разное.

Первый вид телескопов – рефракторы

Самый простой вариант рефрактора представляет собой трубку, в оба конца которой вставлены двояковыпуклые – вот такие ( )– линзы. Они собирают свет от небесных объектов, преломляют и фокусируют  – и в окуляре мы видим изображение.

Телескоп-рефрактор Levenhuk Strike 80 NG:

Второй вид телескопов – рефлекторы

Рефлекторы не преломляют, а отражают лучи. Простейший рефлектор – трубка с двумя зеркалами внутри.

Одно зеркало, большое, расположено на противоположном объективу конце трубки, второе, поменьше  – посередине.

Лучи, попадая в трубку, отражаются от большого зеркала и попадают на маленькое зеркало, которое расположено под углом и направляет свет в линзу – окуляр, куда мы можем заглянуть и увидеть небесные объекты.

Телескоп Bresser Junior Reflector. Внешне рефрактор от рефлектора отличить просто: у рефрактора окуляр расположен с торца трубы, у рефлектора – сбоку.

Что лучше – рефрактор или рефлектор – предмет настоящей холивар между любителями астрономии. У каждого свои особенности.

 Рефракторы проще и  более неприхотливые: не боятся пыли, меньше страдают при транспортировке, позволяют вести наземные наблюдения (т.к. в них изображение не перевернутое).

 Рефлекторы более нежные, но зато позволяют наблюдать за объектами дальнего космоса и заниматься астрофотографией. В целом рефракторы больше подойдут новичкам, а рефлекторы – продвинутым астрономам.

Так как рефракторы проще, рассмотрим работу телескопа на их примере. За образец возьмем телескопы серии Levenhuk Strike NG – они предназначены для начинающих астрономов и сделаны с минимумом сложностей.

Это линза, которая собирает свет. Она стеклянная. Именно поэтому телескопы–рефракторы не бывают очень большими: стекло тяжелое. Самый большой рефрактор находится в Йеркской обсерватории в США. Диаметр его объектива – 1,02 м.

Через линзу видно, что труба телескопа изнутри черного цвета, чтобы не было бликов от ярких объектов.

А это – бленда, которая защищает объектив от росы. Убережет и от небольших механических повреждений (толчков, ударов). Также бленда убирает блики от фонарей и других близко расположенных объектов.

Окуляр. Через него мы смотрим на небо.

Диагональное зеркало (с окуляром и линзой Барлоу) – нужно для того, чтобы изображение было прямым (неперевернутым). Тогда в телескоп можно наблюдать не только космические, но и земные объекты, как на следующей фотографии.

Этот снимок сделан через телескоп цифровым фотоаппаратом. Камера устанавливается на телескоп с помощью переходника.

Камеру можно установить не на все рефракторы. Например, у  самых младших моделей Levenhuk Strike NG за 3 тыс. руб. такой возможности нет.

И, наконец, самое интересное. Снимки, которые можно сделать с помощью телескопа:

Этот снимок сделан через рефрактор Levenhuk Strike 80 NG осенью, в ясную погоду. Луна получилась хорошо, но планеты или галактики качественно сфотографировать с помощью рефрактора вряд ли получится. Это все-таки начальная модель, с которой предполагается совершать первые шаги в астрономии. Но зато ее можно возить с собой и использовать для наблюдения и съемки наземных объектов.

Источник: http://ogend.ru/nu/teleskopy-princip-raboty.html

Для чего нам нужен телескоп: какие бывают приборы, как работают и во сколько раз увеличивают

В 17 веке изобрели такой прибор, как телескоп. Для чего нужен он? Благодаря ему стало возможным наблюдение за движением планет, формированием галактик и изучением таинственного космоса. Вид через телескоп открывается невероятный вид, и доступен он любому, интересующемуся астрономией, человеку.

Принцип работы прибора

Что такое телескоп? Это инструмент, с помощью которого можно наблюдать за удаленным предметом, благодаря определенным линзам и электромагнитному излучению самого предмета. Во сколько раз увеличивает подобная техника?

Все зависит от модели: самый простые детские телескопы в 10 раз, а самый мощный Хаббл – более чем в 1000 раз.

Работает телескоп за счет преломления света и набора правильно подобранных линз. Все дело в возможности оптики собирать свет, причем чем больше ее линза, тем больше света она собирает и, соответственно, лучше передает изображение.

Отсюда следует вывод, что именно свет, а точнее его количество, играет роль в качестве конечного изображения и его детализации. За сбор света отвечает диафрагма – пластина с отверстием, через которое проходят световые лучи, поэтому при покупке оптики следует большое внимание уделить именно этой детали.

Важные параметры

Помимо диафрагмы, есть и другие, не менее важные детали. К ним относятся:

  1. Диаметр объектива – он отвечает за способность инструмента собирать свет: чем больше этот параметр, тем меньшие детали можно будет рассмотреть.
  2. Фокусное расстояние – это расстояние от объектива до фокуса, и оно отвечает за силу увеличения прибора.
  3. Окуляр – это две или более линз, скрепленные цилиндром, чья работа — увеличивать полученное изображение.
  4. Линза – формирует изображение. Часто используется линза Барлоу, способная увеличивать расстояние фокуса вдвое.
  5. Диагональное зеркало – с его помощью можно отклонить поток света под углом в 90°. Это удобно, когда надо наблюдать за телами, расположенными строго вертикально над местом наблюдения.
  6. Видоискатели – дополнительный инструмент, который используется в паре с основной техникой.
  7. Выпрямляющие призмы – поскольку изображения выходят перевернутыми снизу-вверх, то эти детали помогают скорректировать и наблюдать за ними под углом в 45°.
  8. Монтировки — устройства, с помощью которого возможно закрепление и наведение техники.

При покупке прибора следует внимательно ознакомится с этими деталями, чтобы выбрать лучший вариант для поставленной цели.

Виды

Как и любая оптика, телескопы бывают:

  1. Любительские – это оптика, которая может увеличивать объекты в несколько сотен раз;
  2. Профессионально-научные – это более качественные и мощные приборы.

Профессионально-научные подразделяются на:

  • оптические – увеличивают более 250 раз, но после этого порога качество картинок начинает ухудшатся;
  • радиотелескопы – они измеряют энергию объектов и предоставляют наиболее качественную картинку;
  • рентгеновские;
  • гамма-телескопы.

Кроме этого, их делят и по оптическому классу:

  • преломляющие – в них как светособирающая деталь, применяется линза большого размера;
  • отражающие – с вогнутым зеркалом, которое собирает световой поток и формирует картинку;
  • зеркально-линзовые – в этой оптики используют оба вида светособирающих деталей одновременно.

Некоторые приборы в космосе нужны, чтобы делать более качественные снимки. Они сгруппированы по частотам излучения:

  • гамма;
  • рентгеновское;
  • ультрафиолетовое;
  • видимое;
  • инфракрасное;
  • микроволновое;
  • радиоизлучение.

Обратите внимание! Определенные оптический прибор улавливает излучение и на его основании строит картинку, которую передает в обсерватории. На Земле самыми популярными приборами являются рефлекторная техника, которая используется и любителями, и профессионалами.

Что видно

Оптические приборы необходимы для изучения космоса. Наиболее удобен для этого телескоп, ведь в него достаточно четко можно рассмотреть:

  1. Луну – специальной оптикой можно увидеть ее подробный рельеф, и даже пепельный свет;
  2. Солнечную систему.

Планеты Солнечно системы, доступные к изучению:

  • Меркурий – его будет видно словно звезду, и только в объективы более 100 мм диаметром можно наблюдать фазу планеты в виде маленького серпа;
  • Венера — это наиярчайшее небесное тело, легко увидеть фазу планеты в любую технику;
  • Марс — будет виден как маленький круг и лишь 2 раза в год;
  • Юпитер — даже в самодельный телескоп Галилей смог рассмотреть его 4 спутника, поэтому легко рассмотреть эту планету и ее кольца в полной мере;
  • Сатурн – самая красивая планета системы. Она будет видна вместе с кольцами даже в объективы в 50-60 мм;
  • Уран и Нептун — эти отдаленные планеты даже в профессиональные объективы выглядят как маленькие звезды или голубые диски.

Важно! Никогда не следует пытаться посмотреть на Солнце с помощью телескопа. Это приведет к необратимому повреждению глаз и ущербу техники.

Что еще можно увидеть в телескоп:

  1. Звездные скопления — их можно рассмотреть в оптику с любым диаметром, однако только в объективы от 100-130 мм диаметром будут видны отдельные звезды.
  2. Галактики — удаленные системы планет и звезд видны даже в простой бинокль, а вот с объективами в 90-100 мм, уже можно наблюдать их форму, а с объективами диаметром 200-250 мм можно рассмотреть даже звездные рукава.
  3. Туманности – это облака из газа и пыли, которые освещаются звездами. В любительскую технику можно рассмотреть их как слабые пятна, а вот более профессиональное оборудование покажет их газовую структуру.
  4. Двойные звёзды – звезды могут быть не только одинокими как Солнце, но и представлять собой систему из двух, трех и более экземпляров. Специальными приборами можно рассмотреть даже двойные звезды как точки, поскольку они находятся на огромном расстоянии от Земли.
  5. Кометы — «хвостатых гостей» можно увидеть и глазами, а вот в окуляры можно разглядеть в деталях даже их хвосты.

Наблюдение за звездным небом – это увлекательное занятие, которое не только развивает, но и дает представление о всей Вселенной. А чтобы увиденное можно было понять, следует использовать в этих занятиях специальную звездную карту.

Как выбрать прибор для наблюдения за планетами

Из-за обилия оптических приборов на рынке достаточно трудно определится, какую же именно технику выбрать для наблюдения планет. Чтобы упростить этот процесс, следует уделить внимание диаметру трубы – именно апертура (диаметр) определяет все оптические возможности прибора.

Чем она больше, тем большее количество света пропускает объектив и, соответственно, тем больше и качественнее будет конечное изображение и возможность увеличивать объекты.

Чтобы вычислить максимальное увеличение, следует пользоваться формулой: 2х D, где D – это диаметральные миллиметры. Также следует исходить из конечной цели, будет ли техника использоваться для наблюдения за природой или за космосом? Каков уровень астронома? Исходя из ответов следует и выбирать. Обращать внимание следует на:

  • апертуру;
  • фокусное расстояние;
  • линзы или зеркала;
  • наличие рефлектора.

Самый важный параметр из всех – это апертура. Что это? Это диаметр объектива. Для чего нужен правильный его размер? Исходя из него можно будет просто смотреть на далекие пятна, или в подробностях изучать небесное тело. Эти модели следует выбрать для начинающих астрономов:

  • Sky-Watcher;
  • Arsenal-GSO;
  • Celestron.

Что лучше подойдет ребенку

Есть ли отличия между взрослой и детской техникой для наблюдения за небом? Конечно, и главное из них – это увеличение. Детские экземпляры никогда не будет увеличивать картинку так же, как и самый дешевый и простой взрослый. Но преимущества детских вариантов в их размерах – они вся достаточно компактны и легко транспортируются. Сквозь такие линзы можно рассмотреть:

  • спутник Земли и его рельеф;
  • созвездия;
  • все планеты в Солнечной системе;
  • Млечный Путь;
  • Скопления звезд;
  • туманности.

Нужен ли телескоп ребенку?

Безусловно, если он проявляет интерес к науке и астрономии.

Несмотря на маленькое изображение, ребенок сможет увидеть почти все небесные тела, что не только удовлетворит его интерес, но и побудит его учиться и познавать мир.

Поэтому к выбору следует подойти внимательно и обратить на некоторые характеристики покупаемой техники:

  • система: линзовая или зеркальная;
  • фокусное расстояние (идеальное для ребенка – это от 520 до 900 мм);
  • диаметр линзы (от 40 до 130 мм).

Какие модели идеально подойдут малышу? Можно выбрать:

  • Bresser Junior;
  • Levenhuk;
  • Bresser Space;
  • Sky-Watcher Dob.

Какой телескоп выбрать для ребенка? Лучше всего взять рефрактор в моделях специально для детей. Он прост в управлении и не требует настроек.

Совет! Существуют приборы с системой автонаведения, которые могут искать объекты на небосклоне самостоятельно по заданным параметрам.

Для фотографии

Как фотографировать через подобную оптику? Для этого нужны телескоп и любой фотоаппарат. Снимки можно делать даже с помощью самой простой модели и мобильного телефона. Например, окулярная проекция получается путем съемки даже на телефон сквозь окуляр.

Для более качественных снимков потребуется уже фотоаппарат, у которого можно снять объектив, и тренога, которую следует использовать, чтобы избежать тряски рук.

Фотографии также делаются через настроенный окуляр, причем лучше всего снимать в ясную погоду для получения четкой и качественной картинки.

Зачем нужны телескопы, их функции

Что можно увидеть в телескоп

Вывод

Умение видеть не приходит сразу. Опытные астрономы проводят за телескопами много часов прежде чем начинают самостоятельно различать мелкие объекты или отдаленные звезды. Этот талант развивается так же, как и любой другой, поэтому следует запастись терпением и регулярно практиковаться.

Источник: https://uchim.guru/astronomiya/dlya-chego-nuzhen-teleskop.html

Телескопы

Сохрани ссылку в одной из сетей:

Муниципальное образовательное учреждение

«Лицей №2»

Экзаменационная работа по астрономии (реферат)

Телескопы

Выполнила: Мажарова Евгения,

ученица группы Х3-1

Проверила: Гончарова Наталья Владимировна,

учитель астрономии

Ангарск

2007

Содержание

Введение………………………………….………………………………………..2

Приложение……………………………………………………………………….11

Введение

В своей работе я хочу рассказать о предназначении телескопа, о видах, на которые они делятся, и о их характеристиках. А так же, я бы хотела освятить историю телескопа.

Основным прибором, который используется в астрономии для наблюдения небесных тел, приема и анализа приходящего от них излучения, является телескоп. Слово это происходит от двух греческих слов: tele – далеко и skopeo – смотрю. Основное назначение телескопов – собрать как можно больше излучения от небесного тела. Это позволяет видеть неяркие объекты.

Во вторую очередь телескопы служат для рассматривания объектов под большим углом или, как говорят, для увеличения. Разрешение мелких деталей – третье предназначение телескопов. Количество собираемого ими света и доступное разрешение деталей сильно зависит от площади главной детали телескопа – его объектива. Объективы бывают зеркальными и линзовыми.

Виды телескопов

Телескопы бывают самыми разными – оптические (общего астрофизического назначения, коронографы, телескопы для наблюдения ИСЗ), радиотелескопы, инфракрасные, нейтринные, рентгеновские. Все оптические телескопы можно разделить на три вида:

  • рефрактор;

  • рефлектор;

  • зеркально-линзовые.

В телескопах-рефракторах (а) свет собирается 2х-линзовым объективом и фокусируется в точке F. Телескоп-рефлектор же (b) использует для этой цели вогнутое зеркало.

В зеркально-линзовых, или катадиоптрических, телескопах (с) применяется сочетание линз и зеркал, что позволяет применять более короткие и портативные трубы.

Все телескопы используют окуляр (расположенный за точкой фокуса F) для увеличения изображения, сформированного основной оптической системой.

Телескопы-рефракторы. Главная часть простейшего рефрактора – объектив – двояковыпуклая линза, установленная в передней части телескопа. Объектив собирает излучение.

Чем больше размеры объектива D, тем больше собирает излучения телескоп, тем более слабые источники могут быть обнаружены им. Чтобы избежать хроматической аберрации, линзовые объективы делают составными.

Однако в случаях, когда требуется свести к минимуму рассеяние в системе, приходится использовать и одиночную линзу. Расстояние от объектива до главного фокуса называется главным фокусным расстоянием F.

Самый большой рефрактор в мире, который находится в Йеркской обсерватории в США, имеет линзу диаметром в 1 м. Линза с большим диаметром была бы слишком тяжела и сложна в изготовлении.

Телескопы-рефлекторы. Основным элементом рефлектора является зеркало – отражающая поверхность сферической, параболической или гиперболической формы. Обычно оно делается из стеклянной или кварцевой заготовки круглой формы и затем покрывается отражающим покрытием (тонкий слой серебра или алюминия).

Точность изготовления поверхности зеркала, т.е. максимально допустимые отклонения от заданной формы, зависит от длины волны света, на которой будет работать зеркало. Точность должна быть лучше, чем λ/8.

К примеру, зеркало, работающее в видимом свете (длина волны λ = 0,5 микрона), должно быть изготовлено с точностью 0,06 мкм (0,00006 мм).

Зеркально-линзовые (катадиоптрические) телескопы – используют вместе и линзы и зеркала, что дает оптическую конструкцию позволяющую добиться отличного разрешения и качества изображения, при этом используя сверхкороткие, ультрапортативные оптические трубы.

Назначение телескопа

При всем своем многообразии, все телескопы, принимающие электромагнитное излучение, решают две основных задачи:

  • создать максимально резкое изображение и, при визуальных наблюдениях, увеличить угловые расстояния между объектами (звездами, галактиками и т. п.);

  • собрать как можно больше энергии излучения, увеличить освещенность изображения объектов.

Принципиальная схема телескопа.

Принципиальная схема телескопа.

Параллельные лучи света (например, от звезды) падают на объектив. Объектив строит изображение в фокальной плоскости. Лучи света, параллельные главной оптической оси, собираются в фокусе F, лежащем на этой оси. Другие пучки света собираются вблизи фокуса – выше или ниже.

Это изображение с помощью окуляра рассматривает наблюдатель. Диаметры входного и выходного пучков сильно различаются (входной имеет диаметр объектива, а выходной – диаметр изображения объектива, построенного окуляром).

В правильно настроенном телескопе весь свет, собранный объективом, попадает в зрачок наблюдателя. При этом выигрыш пропорционален квадрату отношения диаметров объектива и зрачка. Для крупных телескопов эта величина составляет десятки тысяч раз.

Так решается одна из основных задач телескопа – собрать больше света от наблюдаемых объектов. Если речь идет о фотографическом телескопе – астрографе, то в нем увеличивается освещенность фотопластинки.

Вторая задача телескопа – увеличивать угол, под которым наблюдатель видит объект. Способность увеличивать угол характеризуется увеличением телескопа. Оно равно отношению фокусных расстояний объектива F и окуляра f.

.

История телескопа

Дата рождения телескопа, как и имя его подлинного изобретателя, навсегда кануло в Лету. Вообще телескоп был известен, по крайней мере, в 1590 г. в Италии. В 1609 году Галилео Галилей построил свой первый телескоп с трехкратным увеличением. Он сделал первые телескопические открытия и важные обобщения.

Собственно только после этого зрительная труба – «окуляр» – стала называться телескопом. Поэтому изобретение телескопа часто связывается с именем Галилея. Телескоп, построенный Галилеем, имел скромные размеры (длина трубы 1245 мм, диаметр объектива 53 мм, окуляр 25 диоптрий), несовершенную оптическую схему и 30-кратное увеличение.

Он позволил сделать целую серию замечательных открытий (фазы Венеры, горы на Луне, спутники Юпитера, пятна на Солнце, звезды в Млечном Пути).

Очень плохое качество изображения в первых телескопах заставило оптиков искать пути решения этой проблемы. Оказалось, что увеличение фокусного расстояния объектива значительно улучшает качество изображения. После этого все ученые стали придумывать способы удержания таких длинных телескопов.

Телескоп Гевелия имел длину 50 м и подвешивался системой канатов на столбе.

Телескоп Озу имел длину 98 метров. При этом он не имел трубы, объектив располагался на столбе на расстоянии почти 100 метров от окуляра, который наблюдатель держал в руках (так называемый воздушный телескоп). Наблюдать с таким телескопом было очень неудобно. Озу не сделал ни одного открытия.

Христиан Гюйгенс, наблюдая в 64-метровый воздушный телескоп, открыл кольцо Сатурна и его спутник – Титан, а также заметил полосы на диске Юпитера. Другой крупный астроном того времени, Жан Кассини, с помощью воздушных телескопов открыл еще четыре спутника Сатурна (Япет, Рея, Диона, Тефия), щель в кольце Сатурна (щель Кассини), «моря» и полярные шапки на Марсе.

Первый в мире телескоп-рефлектор.

В 1663 году Грегори создал новую схему телескопа-рефлектора. Он первым предложил использовать в телескопе вместо линзы зеркало. Основная аберрация линзовых объективов – хроматическая – полностью отсутствует в зеркальном телескопе.

Первый телескоп-рефлектор был построен Исааком Ньютоном в 1668 году. Схема, по которой он был построен, получила название «схема Ньютона». Длина телескопа составляла 15 см.

Обращенная к глазу наблюдателя оптическая система называется окуляром. В простейшем случае окуляр может состоять только из одной положительной линзы (в этом случае мы получим сильно искаженное хроматической аберрацией изображение).

Характеристики телескопа

Важнейшими характеристиками телескопа (помимо его оптической схемы, диаметра объектива и фокусного расстояния) являются проницающая сила, разрешающая способность, относительное отверстие и угловое увеличение.

Проницающая сила телескопа характеризуется предельной звездной величиной m самой слабой звезды, которую можно увидеть в данный инструмент при наилучших условиях наблюдений. Для таких условий проницающую силу можно определить по формуле:

m = 2,1 + 5 lgD,
где D – диаметр объектива в миллиметрах.

Диаметр объектива, мм

Предельная звездная величина

60

11,0m

100

12,1m

200

13,6m

500

15,6m

1000

17,1m

Разрешающая способность – минимальный угол между двумя звездами, видимыми раздельно. Если невооруженным глазом можно различить две звезды с угловым расстоянием не менее 2', то телескоп позволяет уменьшить этот предел в Γ раз.

Ограничение на предельное увеличение накладывает явление дифракции – огибание световыми волнами краев объектива. Из-за дифракции вместо изображения точки получаются кольца.

Угловой размер центрального пятна (теоретическое угловое разрешение)

Разрешающая способность может вычисляться по формуле:

где δ – разрешение в секундах, D – диаметр объектива в миллиметрах.

Для видимых длин волн при λ = 550 нм на телескопе с диаметром D = 1 м теоретическое угловое разрешение будет равно δ = 0,1″. Практически угловое разрешение больших телескопов ограничивается атмосферным дрожанием.

При фотографических наблюдениях разрешающая способность всегда ограничена земной атмосферой и погрешностями гидирования и не бывает лучше 0,3″.

При наблюдениях глазом из-за того, что можно попытаться поймать момент, когда атмосфера относительно спокойна (достаточно нескольких секунд), разрешающая способность у телескопов с диаметром D, большим 2 м, может быть близка к теоретической. Хорошим считается телескоп, собирающий более 50 % излучения в кружке 0,5″.

Относительное отверстие – отношения диаметра D к фокусному расстоянию F:

У телескопов для визуальных наблюдений типичное значение относительного отверстия 1/10 и меньше. У современных телескопов она равна 1/4 и больше.

Часто вместо относительного отверстия используется понятие светосилы, равной (D/F)2. Светосила характеризует освещенность, создаваемую объективом в фокальной плоскости.

Относительным фокусным расстоянием телескопа (обозначается перевернутой буквой А) называется величина, обратная относительному отверстию:

 = F / D.

В фотографии эта величина часто называется диафрагмой.

Угловое увеличение (или просто увеличение) показывает, во сколько раз угол, под которым виден объект при наблюдении в телескоп, больше, чем при наблюдении глазом. Увеличение равно отношению фокусных расстояний объектива и окуляра:

Γ = Fоб / fок.

Вывод

В наши дни наука шагнула далеко вперед. Оптические телескопы сменились инфрокрасными и радиотелескопами. Но наука на этом не останавливается и уже через несколько лет, я уверена, создадут совершенно новые по технологии телескопы. Тем более, что разработки такого телескопа уже ведутся.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Л. Л. Сикорук. Телескопы для любителей астрономии. М., «Наука», 1990.

2. Элементарный учебник физики под редакцией академика Г. С. Ландсберга. Том III. М., «Наука», 1971.

3. Телескопы БСЭ, т.25, стр.399.

4. Астрограф БСЭ, т.2, стр.340-3415.

5. Монтировка телескопа. БСЭ, т.16, стр.549-550.

6. Шмидта телескоп. БСЭЭ, т.29, стр.445.

7. Максутова телескоп. БСЭ, т.15, стр. 258.

Приложение

Обсерватория в Мауна-Кеа, Гавайи.

Телескоп им. Кека – совместный проект Калифорнийского технологического института и Калифорнийского университета.

Источник: https://works.doklad.ru/view/VBO6iT03jJQ.html

Ссылка на основную публикацию