Космологическая постоянная – все о космосе

Космологическая постоянная

Рейтинг:  5 / 5

Космологическая постоянная, если таковая действительно существует, могла бы послужить объяснением наблюдаемому расширению Вселенной с нарастающей скоростью расширения.

Постулируя общую теорию относительности, Альберт Эйнштейн был уверен в стационарности Вселенной, то есть, в том, что положение галактик относительно друг друга практически не меняется.

Однако он не мог не заметить, что в силу действия закона всемирного тяготения Ньютона Вселенная должна сжиматься, что противоречит здравому смыслу.

Поэтому, чтобы уравновесить силы гравитации, ведущие Вселенную к неизбежному и скоропостижному коллапсу, Эйнштейну пришлось ввести в уравнения общей теории относительности дополнительное слагаемое — космологический член, своего рода антигравитационную поправку на необъяснимую силу отталкивания, буквально растаскивающую галактики и противодействующую силе их взаимного гравитационного притяжения. Эта сила, согласно Эйнштейну, возрастает с расстоянием с коэффициентом пропорциональности, равным так называемой космологической постоянной, которую ученый обозначил греческой прописной буквой Λ (лямбда).

Противореча, на первый взгляд, критерию красоты теории, эта добавка оказалась неизбежной с точки зрения сохранения ее непротиворечивости. Однако, после открытия явления расширения Вселенной (см.

Закон Хаббла), Эйнштейн понял, что нужда в космологической постоянной отпала.

Эйнштейн тут же исключил космологический член из своих уравнений и впоследствии неоднократно называл его первоначальное появление в них грубейшей из допущенных им за всю свою жизнь ошибок.

После этого почти до конца ХХ столетия космологическая постоянная впала в немилость в теоретической физике.

Редкие смельчаки из числа физиков-теоретиков, пытавшихся хотя бы заикнуться об ее возвращении в модель устройства Вселенной для объяснения той или иной неразрешимой головоломки, немедленно подвергались жестокому высмеиванию со стороны коллег.

А затем, в конце 1990-х годов история физики приняла неожиданный поворот, и Λ гордо вернулась на сцену и оказалась в центре всеобщего внимания.

Теория Большого взрыва неизбежно подразумевает вопрос: и чем всё это представление завершится? Либо разбегающиеся галактики в какой-то момент повернут вспять под воздействием сил гравитационного притяжения, и Вселенная сожмется обратно в точку в момент того, что иногда называют большой крах, по аналогии с большим взрывом; либо Вселенная так и будет расширяться до бесконечности во тьму пространства, пока не обратится в рассеянный холодный прах в результате тепловой смерти. Казалось бы, третьего не дано. Как правоверные христиане не видят для себя после смерти иной альтернативы, кроме попадания в рай или ад, все космологи строили догадки исключительно на предмет того, какая из двух судеб предначертана Вселенной.

Одним из методов получения ответа на этот вопрос явилось измерение скорости удаления галактик, отстоящих от Земли на самые большие расстояния — в миллиарды световых лет.

Поскольку свет от них шел до Земли миллиарды лет, по доплеровскому смещению в их спектрах мы можем вычислить, с какой скоростью они удалялись миллиарды лет тому назад.

Сравнив эту скорость с современной скоростью разбегания ближайших галактик, мы узнаем, насколько силы гравитационного притяжения успели замедлить расширение Вселенной, а там, можно надеяться, и вычислим ее судьбу.

Измерение скорости удаления галактик на сегодняшний день задача решаемая (см. Эффект Доплера) — достаточно измерить красное смещение в спектре излучения их звезд. Гораздо труднее измерить расстояние до этих галактик. Для этого астрономам нужна т. н.

 стандартная свеча — объект с заведомо известной исходной светимостью.

Сравнив энергию доходящего до нас излучения с исходной энергией, испускаемой таким объектом в пространство по всем направлениям и рассеивающейся в нем, мы можем оценить расстояние до него.

В 1990-е годы астрофизикам удалось наконец найти подходящую стандартную свечу — на эту роль идеально подошли сверхновые типа Ia (см. Космический треугольник). Использование этого метода дало, мягко выражаясь, озадачивающие результаты.

Расширение Вселенной не просто не замедляется со временем — оно ускоряется! Судя по всему, имеется какая-то неизвестная нам сила, которая буквально растаскивает Вселенную на куски, — какая-то, по сути, антигравитация, причем настолько сильная, что она побеждает силу тяжести, и под ее воздействием галактики разлетаются с неуклонно возрастающей скоростью. И, стоило астрофизикам осознать этот факт, как им пришлось срочно реабилитировать опальную космологическую постоянную Λ. Вся космологическая теория была еще раз поставлена с ног на голову, и теперь физики-теоретики бьются над тем, как вернуть «грубейшую ошибку» Эйнштейна на законное место в своих теориях. Другой вопрос, навсегда ли космологическая постоянная возвращается в теоретическую физику.

Биографии: Альберт ЭЙНШТЕЙН

См. также:

1990-е Космический треугольник

Источник: https://gitak.ru/200-zakonov-mirozdaniya/astronomiya/261-kosmologicheskaya-postoyannaya.html

Космология – это раздел астрономии. Космология

Космология – это комплексное рассмотрение нашей Вселенной с научной и философской точки зрения. Ее зарождение началось ещё во времена древних людей. Они очень увлекались мифами, поклонению богам, первым изучением звёзд и т. д. Благодаря древним людям мы узнали о существовании первых планет. В основе изучения космологии лежит сопоставление физических свойств Вселенной.

Понятие космологии с точки зрения науки

Космология – это наука, которая объединяет астрофизику и астрономию. Данные для нее получают путем наблюдения за астрономическими изменениями во Вселенной. Для этого применяются законы относительности, которые были приняты ещё самим Альбертом Эйнштейном.

Уже в 20-х годах XX века эта наука была отнесена к классу точных, до этого она считалась частью философских учений. Современная космология на сегодняшний день становится очень популярной. Она объединяет в себе новые открытия в сфере физики, астрономии, астрологии и философии.

Последним достижением является так называемая теория Большого взрыва, согласно которой наша Вселенная меняется в своих размерах из-за высокой плотности и температуры.

Исторические аспекты становления данной науки

Ещё в начале XX века, перед тем как заявить о своем открытии, учёный должен был не только теоретически, но и практически доказать уникальность результатов.

Но вернемся в древние века, когда люди только начинали делать свои первые шаги в астрономии. Ещё в Древнем Египте, Китае, Индии, Греции ученые занимались наблюдением за небесными явлениями.

Благодаря этому был создан лунный календарь, по которому очень длительное время ориентировались жители Земли.

Античная космология была основана на различных мифах и легендах. Аристотель был основателем теории гомоцентрических сфер: наша планета лежит на поверхности полой сферы, центр которой является центром Земли. Именно поэтому тогда была очень популярна модель божественного происхождения Земли.

В дальнейшем происходило изменение учений с каждым последующим веком. Древние физики утверждали, что вокруг Земли происходит движение планет, а сама она находится непосредственно в центре самой Вселенной. Однако все это было лишь теорией, практических подтверждений на тот момент не было.

Современное развитие космологии как науки

Лишь в XV веке Николаю Копернику удалось обобщить все существовавшие на тот момент знания. Согласно его теории, в центре нашей Вселенной находится Солнце, вокруг которого постоянно движутся планеты, в том числе и Земля с Луной. В основу своей теории Коперник положил утверждения таких учёных, как Аристарх Самосский, Леонардо да Винчи, Гераклит и Кузо.

Ещё один большой шаг в развитии этой науки был сделан Кеплером. Он создал свои известные три теории, которые в дальнейшем использовал Исаак Ньютон для своих законов динамики.

Читайте также:  Гигантский магелланов телескоп gmt - все о космосе

Именно благодаря этим законам люди увидели абсолютно другой подход к движению планет во Вселенной. Таким образом, можно сделать вывод, что космология и физика были очень тесно связаны между собой.

Космология кратко дает общие понятия процессов, происходящих в нашей Вселенной.

Основные концептуальные взгляды космологии

Ещё древние люди искали ответ на вопрос: “Какое место наш окружающий мир занимает в самой Вселенной?” В Библии было написано, что наша Вселенная в самом начале была абсолютно невидимой и непримечательной. Эйнштейн утверждал, что Вселенная не движется и находится в стационарном положении.

Однако позднее ученый Фридман доказал, что за счёт определенного движения происходит ее постепенное сужение и расширение. С помощью результатов исследований, полученных астрономом Хабблом, были с точностью измерены расстояния до галактик.

Именно благодаря его открытиям и возникла так называемая теория Большого взрыва.

Основы теории Большого взрыва

Согласно ее положениям, начинать отсчет возраста Вселенной нужно с момента ядерного взрыва. Таким образом, ученые получили результат в 13 млрд лет. На сегодняшний день положения астрофизики для космологии имеют только теоретический аспект.

В первые секунды после Большого взрыва произошло развитие частиц под названием “кванты”, затем спустя время стали появляться кварки, которые имели разные виды взаимодействий.

Лишь спустя 0,01 с после взрыва начали свое развитие различные звёзды, галактики и собственно сама Солнечная система.

Что изучает космология?

Это наука, которая объединяет знания по физике, математике, астрономии и философии. Космология изучает Вселенную как одно целое. В её основе лежит изучение появления всех небесных тел (планеты, Солнце, Луна, метеориты и т. д.), а также звездных скоплений. Теоретические утверждения космологии почерпнуты из астрономии, в некоторых случаях даже из геологии, а практические – из физики.

Понятие Вселенной в космологии

Исходя из утверждений ученых, Вселенная состоит из определенных структур: галактик, звёзд и планет. Каждая из них прошла определенную эволюцию:

  • прототипом галактик в древние времена были протогалактики;
  • для звезд это протозвёзды;
  • для планет – протопланетные облачные образования.

Самой изученной частью на данный момент является метагалактика. Это объединение большого числа галактик, которые находятся в поле зрения астронавтов. Их распределение неравномерно, что экспериментально доказано в астрономии. На сегодняшний день учёные занимаются изучением большого пространства, в котором абсолютно отсутствуют галактики. По возрасту метагалактика приближена к Вселенной.

Сама по себе галактика с точки зрения астрономии – это совокупность звёзд, туманных образований, которые со временем объединяются в достаточно плотную структуру. Они бывают различных форм и размеров.

Самой известной из них считается Млечный путь, который может видеть каждый из обитателей Земли. Также в состав галактик входит газ и космическая пыль. Звёзды совершенно разные по возрасту: одни из них могут быть возрастом, как сама Вселенная, другие могут только родиться.

Их зарождение происходит при воздействии гравитации, магнитной и других сил.

Таким образом, можно сделать вывод, что космология Вселенной на сегодняшний день обладает очень многими знаниями, однако в тоже время таит в себе много загадок. разгадать которые под стать только самым гениальным учёным.

Проблемы теории Большого взрыва

Космология – это относительно молодая наука. Она стала существовать отдельно лишь с середины XX века.

Её основные доводы экспериментально доказаны благодаря учёным из области астрономии, которые вели наблюдения за нашей Вселенной. Космология – это постоянно развивающаяся наука, она не стоит на месте.

Те теоретические данные, которые были выдвинуты несколько десятилетий назад, уже получили экспериментальное подтверждение или опровержение.

Например, во времена учений Эйнштейна и Фридмана плотность Вселенной могла иметь любое значение. Сегодня научно доказано, что эта величина составляет критическое значение ркр. Таких примеров можно привести огромное количество.

Существует ряд основных проблем космологии, которые остаются актуальными на сегодняшний день:

  • плоскость Вселенной;
  • горизонт Вселенной (выглядит идентично с разных направлений);
  • откуда возникли гравитационные уплотнения, в результате которых образовались галактики;
  • из каких именно веществ на самом деле состоит наша Вселенная;
  • согласно теории квантовой гравитации космологическая постоянная должна быть выше в 120 раз;
  • как между собой согласуются время жизни Вселенной и звезд.

Различие между астрономией и космологией

  1. Космология – это наука о Вселенной как едином целом, астрономия же изучает лишь звёздные тела.
  2. Астрономия возникла у древних людей намного раньше, они ориентировались только по звёздам, поклонялись древним богам и т. д.

  3. Космология объединяет знания из астрофизики, физики, философии, геологии, космогонии и астрономии.
  4. В космологии ученые не привязывают свои теории к конкретным планетам, а трактуют их как бы обобщенно.

  5. Астрономия не полагается практически ни на один закон физики, в то время как в основе космологии лежат многие физические утверждения.
  6. Космология, в отличие от астрологии, не относится к строгим наукам. Ряд её предположений не несет никакого практического подтверждения.

  7. Астрономия включает в себя наблюдения за космическими явлениями, в то время как космология находит объяснения для каждого из них.

Однако даже на сегодняшний день многие ученые считают, что космология является частью астрономии и не относят её к отдельным направлениям.

В современной науке сделано много открытий, которые позволяют расширить знания о нашей Вселенной. Некоторые из теорий подтверждены учеными мира экспериментально. Однако остается ещё много задач, которые требует тщательного изучения и материальной базы.

Даже сегодня не существует единого мнения, что собой представляет Вселенная, из какого вещества она состоит. Это и является одним из заданий учёных в области не только космологии, но и сопутствующих ей наук. Знания об окружающем нас мире растут в геометрической прогрессии, но наряду с ними появляется все больше дополнительных вопросов.

Для космологии это можно считать нормальным путём развития и становления как отдельной науки.

Источник: https://www.syl.ru/article/337726/kosmologiya—eto-razdel-astronomii-kosmologiya-opredelenie-istoriya-i-etapyi

Научный статус астрономии и космологии, их место в культуре

Астрономия — наука о космических телах, строении, развитии и о Вселенной в целом. Эта одна из старейших наук возникла в ответ на практические нужды человека: необычности ориентироваться на местности, прокладывать маршруты в море, рассчитывать наступление нового сезона с разливом рек, определять время и др.

Становление современной астрономии связанно с отказом от геоцентрической системы мира, созданной в 10 в. Птолемеем, и заменой ее гелиоцентрической картиной мира. Коперника, основные положения которой он изложил в сочине­нии «Об обращении небесных сфер» (1543). Гелиоцентрическую систему Коперника активно защищал Г. Галилей.

С началом телескопических исследований небесных тел (Га­лилей создал телескоп с 32-кратным увеличением, открыл горы на Луне, четыре спутника Юпитера, фазы у Венеры, пятна на Солн­це) и открытием И. Ньютоном закона всемирного тяготения (ко­нец XVII в.) определяется научный статус астрономии. В XVIII и XIX вв.

астрономия накапливала данные о Солнечной системе, Галактике, физической природе звезд, Солнца, планет и других космических тел. В XX в. в связи с открытием мира галактик стала развиваться внегалактическая астрономия. Исследование спек­тров галактик позволило американскому астроному Э.

Хабблу (1929) обнаружить общее расширение Вселенной, предсказанное советским математиком и геофизиком А.А. Фридманом (1922) на основе теории тяготения и созданной А. Эйнштейном в 1915—1916 гг. общей теории относительности. Научно-техниче­ская революция XX в. оказала огромное воздействие на развитие астрономии в целом.

Читайте также:  Столкновения космических ветров - все о космосе

Создание оптических и радиотелескопов с высоким разрешением, применение ракет и искусственных спут­ников Земли для внеатмосферных астрономических наблюдении привели к открытию новых видов космических тел — радиогалактик, квазаров, пульсаров, источников рентгеновского излучения и др. Были разработаны основы теории эволюции звезд и космологии Солнечной системы.

В настоящее время астрономия включает в себя ряд отраслей Например, физические и химические процессы, происходящие в небесных телах и космическом пространстве, исследует астрофизика; звездная астрономия изучает галактики; предметом иссле­дования небесной механики является движение небесных тел; внеатмосферная астрономия изучает космические объекты; прак­тическая астрономия представляет собой учение об астрономических инструментах и способах их применения. Итак, в XX в. астрономия становится сложной системой на­учного знания с богатым арсеналом средств исследования, таких, как спектральный анализ, мощные телескопы, радио и фотоап­паратура, информационная и космическая техника. На этой основе стала динамично развиваться современная космология. Космология определяется как теория эволюции Вселенной в целом, основанная на исследованиях наиболее общих свойств (однородности, изотропности, расширения) той части Вселен­ной, которая доступна для астрономических наблюдений («на­блюдаемая Вселенная»). Теоретический фундамент космологии составляют основные физические теории (общая теория относительности, теория поля и др.), математический аппарат и философско-методологические основания. Статус объекта космологии — Вселенная как целое — был предметом научных и философских дискуссий, так как содержа­ние данной категории, с одной стороны, не соответствует поня­тию «весь мир», а с другой — является наиболее масштабным, «предельным» для физических теорий и охватывает пространст­венно-временной срез мира в целом. Кроме того, из определения объекта космологии следует, что Вселенная как целое не может быть объектом непосредственного восприятия, исследования ее невозможно вести преимущественно прямыми методами и ре­шающее значение приобретают методы экстраполяции, модели­рования, математической гипотезы, сравнительно-исторический Mi год изучения эволюционных процессов во Вселенной. Эти методы в силу своей специфики требуют более глубокого философского обоснования и осмысления. Современная космология переживает новую эпоху великих 11 открытий, которые по масштабам превосходят открытия, сделан­ные в свое время Галилеем. Они приводят к радикальным измене­ниям в научной картине мира. Теория раздувающейся Вселенной и космология расширили границы мегамира; наша тактика выступает сейчас лишь одной из множества вселен­ных. Объектами интенсивного изучения стали черные дыры, су­ществование которых во Вселенной предсказала общая теория относительности, антропный принцип выявляющий неразрывную связь между глобальными свойствами Метагалактик и и появлением в ней человека. На основе приложения к объ­емам Космоса все новых и новых методов исследования возника­ют новые теоретические подходы и идеи.

Итак, при создании моделей Вселенной существенную роль Играют некоторые константы: гравитационная постоянная, постоянная Планка, скорость света, средняя плотность материи, число измерений пространства-времени и др. Выявленные кон­станты выступают необходимым условием существования слож­ных самоорганизующихся систем во Вселенной.

Астронóмия (греч. αστρονομία, от αστρον — звезда и νόμος — закон) — наука о строении, свойствах, происхождении и развитии небесных тел и их систем, вплоть до Вселенной в целом.

В частности, астрономия изучает Солнце, планеты Солнечной системы и их спутники, астероиды,кометы, метеориты, межпланетное вещество; звёзды и внесолнечные планеты, туманности,межзвёздное вещество, галактики и их скопления, пульсары, квазары, чёрные дыры, экзопланетыи многое другое.

Космоло́гия (космос + -логия) — раздел астрономии и физики, изучающий свойства и эволюциюВселенной в целом. Основу этой дисциплины составляет математика, физика и астрономия. В своих задачах она часто пересекается с философией и богословием. Задачи астрономии

Основными задачами астрономии являются:

  1. Изучение и объяснение видимых движений небесных тел, нахождение закономерностей и причин этих движений.
  2. Изучение строения небесных тел, их физических и химических свойств, построение моделей их внутреннего строения.
  3. Решение проблем происхождения и развития небесных тел и их систем.
  4. Изучение наиболее общих свойств Вселенной, построение теории наблюдаемой частиВселенной — Метагалактики.

Решение этих задач требует создания эффективных методов исследования — как теоретических, так и практических. Первая задача решается путём длительных наблюдений, начатых ещё в глубокой древности, а также на основе законов механики, известных уже около 300 лет.

Поэтому в этой области астрономии мы располагаем наиболее богатой информацией, особенно для сравнительно близких к Земле небесных тел: Луны, Солнца, планет, астероидов и т. д. Решение второй задачи стало возможным в связи с появлением спектрального анализа ифотографии.

Изучение физических свойств небесных тел началось во второй половине XIX века, а основных проблем — лишь в последние годы. Третья задача требует накопления наблюдаемого материала. В настоящее время таких данных ещё не достаточно для точного описания процесса происхождения и развития небесных тел и их систем.

Поэтому знания в этой области ограничиваются только общими соображениями и рядом более или менее правдоподобных гипотез. Четвёртая задача является самой масштабной и самой сложной. Практика показывает, что для её решения уже недостаточно существующих физических теорий.

Необходимо создание более общейфизической теории, способной описывать состояние вещества и физические процессы при предельных значениях плотности, температуры, давления. Для решения этой задачи требуются наблюдательные данные в областях Вселенной, находящихся на расстояниях в несколько миллиардов световых лет.

Современные технические возможности не позволяют детально исследовать эти области. Тем не менее, эта задача сейчас является наиболее актуальной и успешно решается астрономами ряда стран, в том числе и России.

История астрономии

Основная статья: История астрономии Ещё в глубокой древности люди интересовались движением светил по небосводу, хотя астрономия тогда была основательно перемешана с астрологией. Окончательное выделение научной астрономии произошло в эпоху Возрождения и заняло долгое время.История космологии Ранние формы космологии представляли собой религиозные мифы о сотворении (космогония) и уничтожении (эсхатология) существующего мира. В китайской космологии считалось, что Земля — своего рода чаша, прикрытая небом, состоящая из полусфер, вращающихся на очень низком расстоянии от Земли.Возникновение современной космологии Возникновение современной космологии связано с развитием в XX веке Общей теории относительности Эйнштейна и физики элементарных частиц.

В 1922 А. А. Фридман предложил решение уравнения Эйнштейна, в котором изотропная вселенная расширялась из начальной сингулярности. Подтверждением теории нестационарной вселенной стало открытие в 1929 Э. Хабблом космологического красного смещения галактик. Таким образом, возникла общепринятая сейчас теория Большого Взрыва.

Возможное будущее Вселенной В настоящее время обнаружено, что, по-видимому, наша Вселенная расширяется с ускорением. Этот факт не отменяет закона Хаббла, так как последний действует на более близких расстояниях, чем эти новые эффекты.

Поскольку свойства заполняющей Вселенную материи известны плохо (смотри статьи Тёмная материя, Тёмная энергия), а сама постоянная Хаббла и многие другие космологические величины определяются с большой погрешностью (модельно независимым путём), до сих пор не ясно, будет ли Вселенная расширяться вечно, а если будет, то как: все быстрее и быстрее, либо наоборот — с замедлением. В связи с этим есть самые различные сценарии возможного развития Вселенной в будущем. Согласно одному из них, Вселенная даже может начать сжиматься и схлопнуться в точку в ходе так называемого «большого коллапса», процесса, обратного Большому Взрыву. Теоретическая физикадостаточно серьезно рассматривает и такую гипотезу, что нынешнее состояние и тонкое строение вакуума являются так называемым «ложным» или «мнимым» вакуумом (false vacuum). Это состояние неустойчиво и может перейти в «истинный вакуум» с меньшей энергией. Тогда наша Вселенная пропадет за одно мгновение и необратимо.

Читайте также:  Как найти созвездие и туманность ориона на небе - все о космосе

Однако наибольшее внимание уделяют сейчас теории, аналогичной старой «тепловой смерти Вселенной». Она следует из «эталонной» космологической ΛCDM-модели.

В расширяющейся Вселенной будут постепенно уравновешиваться температура, удаляющиеся друг от друга звезды, в которых закончатся термоядерные процессы, остынут, все большая часть энергии будет находиться в форме излучения.

Даже черные дыры будут медленно «испаряться» за счет квантовых туннельных эффектов («Излучение Хокинга»). Такой сценарий находится в полном согласии с представлениями классической термодинамики.

Источник: http://MirZnanii.com/a/9863/nauchnyy-status-astronomii-i-kosmologii-ikh-mesto-v-kulture

Космология

Начиная с самых ранних этапов своей истории человек стремился понять, как устроен окружающий мир, что такое звезды, планеты, солнце, как они возникли. Многовековые попытки дать ответы на эти вопросы привели к возникновению космологии.

Космология — раздел естествознания, предметной областью которого является изучение свойств и эволюции Вселенной в целом

Сам термин «космология» образован от двух греческих слов: kosmos — Вселенная и logos — закон, учение.

Космология использует достижения и методы астрономии, физики, математики, философии. Естественно-научной базой космологии являются астрономические наблюдения Галактики и других звездных систем, общая теория относительности, физика микропроцессов и высоких плотностей энергии, релятивистская термодинамика и ряд других новейших физических теорий.

Возникновение современной космологии

Возникновение современной космологии связано с развитием в XX веке общей теории относительности (ОТО) Эйнштейна и физики элементарных частиц. Первое исследование на эту тему, опирающееся на ОТО, Эйнштейн опубликовал в 1917 году под названием «Космологические соображения к общей теории относительности».

В ней он ввёл три предположения: Вселенная однородна, изотропна и стационарна. Чтобы обеспечить последнее требование, Эйнштейн ввёл в уравнения гравитационного поля дополнительный «космологический член». Полученное им решение означало, что Вселенная имеет конечный объём (замкнута) и положительную кривизну.

В 1922 году А. А. Фридман предложил нестационарное решение уравнения Эйнштейна, в котором изотропная Вселенная расширялась из начальной сингулярности. Подтверждением теории нестационарной вселенной стало открытие в 1929 году Э. Хабблом космологического красного смещения галактик. Таким образом, возникла общепринятая сейчас теория Большого взрыва (БВ).

По современным научным представлениям, наблюдаемая нами сейчас Вселенная возникла ~13,8 млрд лет назад из некоторого начального сингулярного состояния и с тех пор непрерывно расширяется и охлаждается

Согласно известным ограничениям по применимости современных физических теорий, наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи с температурой примерно 1032 К (Планковская температура) и плотностью около1093 г/см³ (Планковская плотность).

Ранняя Вселенная в соответствии с моделью БВ представляла собой высокооднородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением.

В результате расширения и охлаждения во Вселенной произошли фазовые переходы, аналогичные конденсации жидкости из газа, но применительно к элементарным частицам.

Принятая в настоящее время периодизация

  • Самая ранняя эпоха, о которой существуют какие-либо теоретические предположения, — это планковское время (10−43 с после Большого взрыва). В это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий.

    По современным представлениям, эта эпоха квантовой космологии продолжалась до времени порядка 10−11 с после Большого взрыва.

  • Следующая эпоха характеризуется рождением первоначальных частиц кварков и разделением видов взаимодействий. Эта эпоха продолжалась до времён порядка 10−2 с после Большого взрыва.

    В настоящее время уже существуют возможности достаточно подробного физического описания процессов этого периода.

  • Современная эпоха стандартной космологии началась через 0,01 секунды после Большого взрыва и продолжается до сих пор.

    В этот период образовались ядра первичных элементов, возникли звёзды, галактики, Солнечная система.

Важной вехой в истории развития Вселенной считается эра рекомбинации, когда материя расширяющейся Вселенной стала прозрачной для излучения. По современным представлениям, это произошло через 380 тыс.

лет после Большого взрыва. В настоящее время это излучение мы можем наблюдать в виде реликтового фона, что является важнейшим экспериментальным подтверждением существующих моделей Вселенной.

Итак, XX век считается веком рождения современной космологии. Она возникает в начале века и по мере развития вбирает в себя все новейшие достижения, такие как технологии постройки больших телескопов, космические полёты и компьютеры.

Хронология достижений современной космологии

Первые шаги к уже современной космологии были сделаны в 1908–1916 годы. В это время открытие прямо-пропорциональной зависимости между периодом и видимой звёздной величиной у цефеид в Малом Магеллановом облаке (Генриетта Ливитт, США) позволило Эйнару Герцшпрунгу и Харлоу Шепли разработать метод определения расстояний по цефеидам.

В 1916 г. А. Эйнштейн пишет уравнения общей теории относительности — теории гравитации, ставшей основой для доминирующих космологических теорий. В 1917 году, пытаясь получить решение, описывающее «стационарную» Вселенную, Эйнштейн вводит в уравнения общей теории относительности дополнительный параметр — космологическую постоянную.

В 1922–1924 гг. А. Фридман применяет уравнения Эйнштейна (без космологической постоянной и с ней) ко всей Вселенной и получает нестационарные решения.

В 1929 г. Эдвин Хаббл открывает закон пропорциональности между скоростью удаления галактик и расстоянием до них, позже названный его именем. Становится очевидным, что Млечный путь — лишь небольшая часть окружающей Вселенной.

Вместе с этим появляется доказательство для гипотезы Канта: некоторые туманности — галактики, подобные нашей.

Одновременно подтверждаются выводы Фридмана о нестационарности окружающего мира, а вместе с тем и верность выбранного направления развития космологии.

С этого момента и вплоть до 1998 года классическая модель Фридмана без космологической постоянной становится доминирующей. Влияние космологической постоянной на итоговое решение изучается, но ввиду отсутствия экспериментальных указаний на её существенность для описания Вселенной такие решения для интерпретации наблюдательных данных не применяются.

В 1932 году Ф. Цвикки выдвигает идею о существовании тёмной материи — вещества, не проявляющего себя электромагнитным излучением, но участвующего в гравитационном взаимодействии. В тот момент идея была встречена скептически, и только около 1975 года она получает второе рождение и становится общепринятой.

В 1946–1949 г.г. Г. Гамов, пытаясь объяснить происхождение химических элементов, применяет законы ядерной физики к началу расширения Вселенной. Так возникает теория «горячей Вселенной» — теория Большого Взрыва, а вместе с ней и гипотеза об изотропном реликтовом излучении с температурой в несколько градусов Кельвина.

В 1964 г. А. Пензиас, Р. Вилсон открывают изотропный источник помех в радиодиапазоне. Тогда же выясняется, что это реликтовое излучение, предсказанное Гамовым. Теория горячей Вселенной получает подтверждение, а в космологию приходит физика элементарных частиц.

В 1991–1993 г.г. в космических экспериментах «Реликт-1» и COBE открыты флуктуации реликтового излучения.

В 1998 г. по далеким сверхновым типа Ia строится диаграмма Хаббла для больших z. Выясняется, что Вселенная расширяется с ускорением.

Модель Фридмана допускает подобное только при введении антигравитации, описываемой космологической постоянной. Возникает мысль о существовании особого рода энергии, ответственного за это — тёмной энергии.

Появляется современная теория расширения — ΛCDM-модель, включающая в себя как тёмную энергию, так и тёмную материю.

Интернет-энциклопедия «Википедия»
Теории строения Вселенной

ЕЩЁ МАТЕРИАЛЫ ПО ТЕМЕ:

1. Эволюция космологических моделей

Источник: https://myvera.ru/kosmolog

Ссылка на основную публикацию