Эффект доплера – все о космосе

Доплера эффект

Эффект Доплера - все о космосе

Доплера эффект, изменение воспринимаемой частоты колебаний, обусловленное движением источника или приемника волн, либо и того и другого; впервые теоретически обоснован в 1842 К.Доплером (1803–1853).

Данный эффект особенно заметен в случае звуковых волн, примером чему может служить изменение воспринимаемой высоты тона гудка проходящего мимо поезда.

Возникновение эффекта поясняется рисунком, на котором источник волн движется влево со скоростью v относительно неподвижного наблюдателя («приемника»). За время t = t1 – t0 источник проходит расстояние vt.

Если l – длина волны испускаемого звука, то число волн, укладывающихся в промежутке между источником и приемником, увеличивается на vt/l. Если частота звука fe, то за время t испускается fet волн. Но число frt волн, достигших приемника, меньше, чем испущено источником, на величину vt/l. Отсюда следует, что

Это соотношение справедливо и в том случае, когда приемник движется, а источник неподвижен. Если скорость v значительно меньше скорости звука c, то величину l можно заменить величиной c/fe, не совершив большой ошибки.

Принимаемая частота оказывается ниже излучаемой, если источник и приемник удаляются друг от друга, и выше излучаемой, если они сближаются.

Движение среды, в которой распространяются звуковые волны, например, ветер, дующий в направлении приемника или от него, также приводит к изменению регистрируемой приемником частоты.

Эффект Доплера имеет важное значение в астрономии, гидролокации и радиолокации. В астрономии по доплеровскому сдвигу определенной частоты испускаемого света можно судить о скорости движения звезды вдоль линии ее наблюдения.

Наиболее удивительный результат дает наблюдение доплеровского сдвига частот света удаленных галактик: так называемое красное смещение свидетельствует о том, что все галактики удаляются от нас со скоростями примерно до половины скорости света, возрастающими с расстоянием.

Вопрос о том, расширяется ли Вселенная подобным образом или красное смещение обусловлено чем-то иным, а не «разбеганием» галактик, остается открытым.

Радиолокация – это определение местоположения объекта, обычно самолета или ракеты, путем облучения его высокочастотными радиоволнами и последующей регистрации отраженного сигнала.

Если объект движется с большой скоростью в направлении радиолокатора или от него, то сигнал будет принят со значительным доплеровским сдвигом частоты, и по этому сдвигу можно вычислить скорость объекта.

Точно так же доплеровский сдвиг частоты ультразвукового сигнала используется для определения скорости движения подводных лодок.
См. также РАДИОЛОКАЦИЯ; ЗВУК И АКУСТИКА.

Литература:

Гинзбург В.Л. Теоретическая физика и астрофизика. Дополнительные главы. М., 1981
Франкфурт У.Н., Френк А.М. Оптика движущихся тел. М., 1981

Проверь себя!
Ответь на вопросы викторины «Физика»

Что такое изотоп, чему равно число Авогадро и что изучает наука реология?

Источник: http://www.krugosvet.ru/enc/nauka_i_tehnika/fizika/DOPLERA_EFFEKT.html

Эффект Доплера

Вам, наверняка, хоть раз в жизни доводилось стоять у дороги, по которой проносится машина со спецсигналом и включенной сиреной.

Пока вой сирены приближается, его тон выше, затем, когда машина поравняется с вами, он понижается, и, наконец, когда машина начинает удаляться, он понижается еще, и получается знакомое: ййййииииээээЭААААОоооуууумммм — такой примерно звукоряд.

Сами того, возможно, не сознавая, вы при этом наблюдаете фундаментальнейшее (и полезнейшее) свойство волн.

Волны — вообще вещь странная. Представьте себе пустую бутылку, болтающуюся неподалеку от берега. Она гуляет вверх-вниз, к берегу не приближаясь, в то время как вода, казалось бы, волнами набегает на берег. Но нет — вода (и бутылка в ней) — остаются на месте, колеблясь лишь в плоскости, перпендикулярной поверхности водоема.

Иными словами, движение среды, в которой распространяются волны, не соответствует движению самих волн.

По крайней мере, футбольные болельщики хорошо это усвоили и научились использовать на практике: пуская «волну» по стадиону, они сами никуда не бегут, просто встают и садятся в свой черед, а «волна» (в Великобритании это явление принято называть «мексиканской волной») бежит вокруг трибун.

Волны принято описывать их частотой (число волновых пиков в секунду в точке наблюдения) или длиной (расстояние между двумя соседними гребнями или впадинами). Эти две характеристики связаны между собой через скорость распространения волны в среде, поэтому, зная скорость распространения волны и одну из главных волновых характеристик, можно легко рассчитать другую.

Как только волна пошла, скорость ее распространения определяется только свойствами среды, в которой она распространяется, — источник же волны никакой роли больше не играет.

По поверхности воды, например, волны, возбудившись, далее распространяются лишь в силу взаимодействия сил давления, поверхностного натяжения и гравитации.

Акустические же волны распространяются в воздухе (и иных звукопроводящих средах) в силу направленной передачи перепада давлений. И ни один из механизмов распространения волн не зависит от источника волны. Отсюда и эффект Доплера.

Давайте еще раз задумаемся над примером с воющей сиреной. Предположим для начала, что спецмашина стоит. Звук от сирены доходит до нас потому, что упругая мембрана внутри нее периодически воздействует на воздух, создавая в нем сжатия — области повышенного давления, — чередующиеся с разрежениями.

Пики сжатия — «гребни» акустической волны — распространяются в среде (воздухе), пока не достигнут наших ушей и не воздействуют на барабанные перепонки, от которых поступит сигнал в наш головной мозг (именно так устроен слух).

Частоту воспринимаемых нами звуковых колебаний мы по традиции называем тоном или высотой звука: например, частота колебаний 440 герц в секунду соответствует ноте «ля» первой октавы. Так вот, пока спецмашина стоит, мы так и будем слышать неизмененный тон ее сигнала.

Но как только спецмашина тронется с места в вашу сторону, добавится новый эффект. За время с момента испускания одного пика волны до следующего машина проедет некоторое расстояние по направлению к вам. Из-за этого источник каждого следующего пика волны будет ближе.

В результате волны будут достигать ваших ушей чаще, чем это было, пока машина стояла неподвижно, и высота звука, который вы воспринимаете, увеличится. И, наоборот, если спецмашина тронется в обратном направлении, пики акустических волн будут достигать ваших ушей реже, и воспринимаемая частота звука понизится.

Вот и объяснение тому, почему при проезде машины со спецсигналами мимо вас тон сирены понижается.

Мы рассмотрели эффект Доплера применительно к звуковым волнам, но он в равной мере относится и к любым другим.

Если источник видимого света приближается к нам, длина видимой нами волны укорачивается, и мы наблюдаем так называемое фиолетовое смещение (из всех видимых цветов гаммы светового спектра фиолетовому соответствуют самые короткие длины волн). Если же источник удаляется, происходит кажущееся смещение в сторону красной части спектра (удлинение волн).

Этот эффект назван в честь Кристиана Иоганна Доплера, впервые предсказавшего его теоретически. Эффект Доплера меня на всю жизнь заинтересовал благодаря тому, как именно он был впервые проверен экспериментально.

Голландский ученый Кристиан Баллот (Christian Buys Ballot, 1817–1870) посадил духовой оркестр в открытый железнодорожный вагон, а на платформе собрал группу музыкантов с абсолютным слухом. (Идеальным слухом называется умение, выслушав ноту, точно назвать её.).

Всякий раз, когда состав с музыкальным вагоном проезжал мимо платформы, духовой оркестр тянул какую-либо ноту, а наблюдатели (слушатели) записывали слышащуюся им нотную партитуру.

Как и ожидалось, кажущаяся высота звука оказалась в прямой зависимости от скорости поезда, что, собственно, и предсказывалось законом Доплера.

Эффект Доплера находит широкое применение и в науке, и в быту. Во всем мире он используется в полицейских радарах, позволяющих отлавливать и штрафовать нарушителей правил дорожного движения, превышающих скорость.

Пистолет-радар излучает радиоволновой сигнал (обычно в диапазоне УКВ или СВЧ), который отражается от металлического кузова вашей машины. Обратно на радар сигнал поступает уже с доплеровским смещением частоты, величина которого зависит от скорости машины.

Сопоставляя частоты исходящего и входящего сигнала, прибор автоматически вычисляет скорость вашей машины и выводит ее на экран.

Несколько более эзотерическое применение эффект Доплера нашел в астрофизике: в частности, Эдвин Хаббл, впервые измеряя расстояния до ближайших галактик на новейшем телескопе, одновременно обнаружил в спектре их атомного излучения красное доплеровское смещение, из чего был сделан вывод, что галактики удаляются от нас (см. Закон Хаббла). По сути, это был столь же однозначный вывод, как если бы вы, закрыв глаза, вдруг услышали, что тон звука двигателя машины знакомой вам модели оказался ниже, чем нужно, и сделали вывод, что машина от вас удаляется. Когда же Хаббл обнаружил к тому же, что чем дальше галактика, тем сильнее красное смещение (и тем быстрее она от нас улетает), оно понял, что Вселенная расширяется. Это стало первым шагом на пути к теории Большого взрыва — а это вещь куда более серьезная, чем поезд с духовым оркестром.

Источник: http://elementy.ru/trefil/21079/Effekt_Doplera

Эффект Доплера для чайников: суть явления, применение, формула

Эффект Доплера – важнейшее явление в физике волн. Прежде чем перейти напрямую к сути вопроса, немного вводной теории.

Колебание – в той или иной степени повторяющийся процесс изменения состояния системы около положения равновесия.

Волна – это колебание, которое способно удаляться от места своего возникновения, распространяясь в среде. Волны характеризуются амплитудой, длиной и частотой.

Звук, который мы слышим – это волна, т.е. механические колебания частиц воздуха, распространяющиеся от источника звука.

Вооружившись сведениями о волнах, перейдем к эффекту Доплера. А если Вы хотите узнать больше о колебаниях, волнах и резонансе – добро пожаловать в отдельную статью нашего блога.

Суть эффекта Доплера

Самый популярный и простой пример, объясняющий суть эффекта Доплера – неподвижный наблюдатель и машина с сиреной. Допустим, Вы стоите на остановке. К Вам по улице движется карета скорой помощи со включенной сиреной.

Частота звука, которую Вы будете слышать по мере приближения машины, не одинакова. Сначала звук будет более высокой частоты, когда машина поравняется с остановкой. Вы услышите истинную частоту звука сирены, а по мере удаления частота звука будет понижаться.

Читайте также:  Зодиакальное созвездие скорпион - все о космосе

Это и есть эффект Доплера.

Эффект Доплера

Если у Кэпа спросят, кто открыл эффект Доплера, он не задумываясь ответит, что это сделал Доплер. И будет прав.

Данное явление, теоретически обоснованное в 1842 году австрийским физиком Кристианом Доплером, было впоследствии названо его именем.

Сам Доплер вывел свою теорию, наблюдая за кругами на воде и предположив, что наблюдения можно обобщить для всех волн. Экспериментально подтвердить эффект Доплера для звука и света удалось позднее.

Выше мы рассмотрели пример Эффект Доплера для звуковых волн. Однако эффект Доплера справедлив не только для звука. Различают:

  • Акустический эффект Доплера;
  • Оптический эффект Доплера;
  • Эффект Доплера для электромагнитных волн;
  • Релятивистский эффект Доплера.

Кристиан Доплер (1803-1853)

Именно эксперименты со звуковыми волнами помогли дать первое экспериментальное подтверждение этому эффекту.

Экспериментальное подтверждение эффекта Доплера

Подтверждением правильности рассуждений Кристиана Доплера связано с одним из интересных и необычных физических экспериментов.

В 1845 году метеоролог из Голландии Христиан Баллот взял мощный локомотив и оркестр, состоящий из музыкантов с абсолютным слухом.

Часть музыкантов – это были трубачи – ехали на открытой площадке поезда и постоянно тянули одну и ту же ноту. Допустим, это была ля второй октавы. Другие музыканты находились на станции и слушали, что играют их коллеги.

Абсолютный слух всех участников эксперимента сводил вероятность ошибки к минимуму. Эксперимент длился два дня, все устали, было сожжено много угля, но результаты того стоили. Оказалось, что высота звука действительно зависит от относительной скорости источника или наблюдателя (слушателя).

Первые эксперименты по подтверждению эффекта Доплера

Применение эффекта Доплера

Одно из наиболее широко известных применений – определение скорости движения объектов при помощи датчиков скорости. Радиосигналы, посылаемые радаром, отражаются от машин и возвращаются обратно. При этом, смещение частоты, с которой сигналы возвращаются, имеет непосредственную связь со скоростью машины. Сопоставляя скорость и изменение частоты, можно вычислять скорость.

Эффект Доплера широко применяется в медицине. На нем основано действие приборов ультразвуковой диагностики. Существует отдельная методика в УЗИ, называемая доплерографией.

Эффект Доплера также используют в оптике, акустике, радиоэлектронике, астрономии, радиолокации.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Открытие эффекта Доплера сыграло важную роль в ходе становления современной физики. Одно из подтверждений теории Большого взрыва основывается на этом эффекте. Как связаны эффект Доплера и Большой взрыв? Согласно теории Большого взрыва, Вселенная расширяется.

При наблюдении удаленных галактик наблюдается красное смещение – сдвиг спектральных линий в красную сторону спектра. Объясняя красное смещение при помощи эффекта Доплера, можно сделать вывод, согласующийся с теорией: галактики удаляются друг от друга, Вселенная расширяется.

Красное и синее смещение при приближении и отдалении объектов

Формула для эффекта Доплера

Когда теорию эффекта Доплера подвергали критике, одним из аргументов оппонентов ученого был факт, что теория помещалась всего на восьми листах, а вывод формулы эффекта Доплера не содержал громоздких математических выкладок. На наш взгляд, это только плюс!

Пусть u – скорость приемника относительно среды, v – скорость источника волн относительно среды, с  – скорость распространения волн в среде, w0 – частота волн источника. Тогда формула эффекта Доплера в самом общем случае будет выглядеть так:

Здесь w – частота, которую будет фиксировать приемник.

Релятивистский эффект Доплера

В отличие от классического эффекта Доплера при распространении электромагнитных волн в вакууме для расчета эффекта Доплера следует применять СТО и учитывать релятивистское замедление времени.

Пусть света – с, v – скорость источника относительно приемника, тета – угол между направлением на источник и вектором скорости, связанным с системой отсчета приемника.

Тогда формула для релятивистского эффекта Доплера будет иметь вид:

Сегодня мы рассказали о важнейшем эффекте нашего мира – эффекте Доплера. Хотите научиться решать задачи на эффект Доплера быстро и легко? Спросите у наших авторов, и они охотно поделятся своим опытом! А в конце – еще немного про теорию Большого взрыва и эффект Доплера.

Оцените материал 14 418

Источник: https://Zaochnik.ru/blog/effekt-doplera-dlya-chajnikov-sut-yavleniya-primenenie/

Эффект Доплера

Эффект Доплера – это изменение частоты и длины волн (оно регистрируется приёмником), порождённое перемещениями, как источника волн, так и приёмника.Причём, движения среды, в коей происходит перемещение волн, не связано с этим перемещением, а волновая скорость зависит от характеристик этой среды. Сам волновой источник уже не может влиять на дальнейшее поведение волн.

Удаляющийся источник будет иметь спектральное смещение в красную сторону, а длина волн его будет увеличиваться.

Основными волновыми характеристиками являются частота и длина волны. Частотой считается количество пиков волн, произошедшее в точке наблюдения за секунду. Длина волны – это расстояние между её «гребнями» или «впадинами». Эти две характеристики связывает скорость, с которой происходит распространение волн в какой-либо среде.

Принцип явления прост: если источник волны и наблюдатель двигаются относительно друг друга, то изменится частота сигнала, воспринимаемая наблюдателем. Она либо увеличивается (приближение источника), либо снижается (удаление источника).

 Это частотное смещение находится в прямой пропорции к скорости источника, перемещающегося по отношению к наблюдателю.

В 1842 году австриец Кристиан Доплер сумел установить и обосновать зависимость частоты колебаний, которую оценивает наблюдатель, от скорости и направления движения источника волн. На этом явлении базируются основные принципы измерений многих параметров космических объектов.

Универсальность закона

Из практических изысканий ясно, что эффект Доплера верен для любого типа волн, в частности, и звуковых. Это легко подтверждается примером движущегося автомобиля с работающей сиреной.

Приближаясь, звук сирены усиливается (уменьшение длины волны), а при удалении её, сила звука сирены будет снижаться (увеличение длины волны). Это же правило работает и для света, и электромагнитного излучения в целом.

 При сближении с наблюдателем светового источника, длина наблюдаемой волны будет становиться короче, и свет будет иметь оттенки спектра в фиолетовых тонах.

Эффект Доплера в астрономии

Открытие Доплера используется при анализе космических объектов. При наблюдении спектра через призму спектрометра, можно увидеть характерные линии химических элементов, находящихся в составе объекта исследования. Именно на это обратил внимание Хаббл. Заметив в спектре атомного излучения изучаемых им галактик красное доплеровское смещение, он сделал вывод, что эти галактики отдаляются.

Смещение в красную сторону спектра тем больше, чем дальше от нас расположены объекты. 

Таким образом, становится ясно, что эффект Доплера – яркий индикатор расширяющейся Вселенной. Если бы Доплеру был известен закон Хаббла, то он и сам бы смог вычислить расстояния до галактик.

Метод Доплера в обнаружении экзопланет

Иначе этот метод называют спектрометрическим измерением лучевой скорости звёзд. Он получил наибольшее распространение для поиска экзопланет, и эффективность его применения исключительно высока.

Метод Доплера позволяет обнаруживать планеты, имеющие массы в несколько масс Земли, которые располагаются близко к своей звезде.

А также, можно «увидеть» планеты-гиганты, имеющие периоды обращения до 10 лет. Двигаясь вокруг своего светила, планета раскачивает его, что вызывает доплеровское смещение в спектре звезды. С помощью этого метода определяется амплитуда колебаний радиальной скорости между звездой и одиночной планетой.  При помощи метода Доплера к концу 2012 года удалось открыть 488 планет в 379 системах планет.

Использование в других областях

Открытие нашло применение в различных областях:

  • Доплеровский радар. Этот прибор улавливает частотные изменения сигнала, отражаемого от предмета. Изменение этого параметра позволяет измерить скорость объекта. Такие радары позволяют определять скорости автомобилей и летательных аппаратов, судов, течений водных потоков.
  • Измерения скоростей потоков. На эффекте Доплера основан метод измерения скорости потоков жидкостей и газов. Это возможно без прямого помещения датчика в сам поток. Определение скорости происходит путём волнового рассеяния.
  • Применение в медицинских исследованиях. Эффект Доплера в медицине распространён достаточно широко. Особенно удачно проводятся акушерские обследования, помогающие отслеживать ход беременности. Для диагностики характеристик кровотока также используют принцип этого эффекта.
  • Методика, использующая ультразвуковые исследования, основанные на эффекте Доплера, называется доплерографией. Его сутью является то, что движущиеся объекты отражают ультразвуковые волны с изменённой частотой.

Принцип Доплера незаменим, если необходимо определять скорости предметов, например:

  • Детекторы движения в различных системах охран;
  • Навигация на подводных судах;
  • Измерения силы ветровых потоков;
  • Определение скоростей передвижения облаков.

Поразительным фактом является то, что эффект Доплера стабильно работает при гигантских колебаниях частот, но мизерных (мм/сек) скоростях источника.

Ещё по теме:

by HyperComments

Источник: http://light-science.ru/fizika/effekt-doplera.html

Экзопланеты. Методы поиска экзопланет. Метод лучевых скоростей. Эффект Доплера

  Здравствуйте, Дорогие Друзья, зрители и подписчики моего блога! Меня зовут Артём, и сегодня мы продолжим тему экзопланет. Начиная с этого видео, я начну вам рассказывать о том, как открывают экзопланеты.

Всего существует около десяти различных методов, но мы с вами рассмотрим основные пять: метод Доплера, транзитный метод, метод гравитационного микролинзирования, метод периодических пульсаций и метод прямого наблюдения.

И в этом блоге мы поговорим о методе лучевых скоростей или, как ещё говорят, Методе Доплера.

  Итак, начнём.

  Сама идея того, что вокруг далёких звёзд могут вращаться планеты, похожие на планеты нашей Солнечной Системы, возникла уже давно. Все мы помним из истории трагическую судьбу Джордано Бруно.

Хотя, я думаю, и до него у многих возникала подобная мысль, но, озвучивать её было просто небезопасно. Спустя столетия идея из сознания людей никуда не делась, и они стали пытаться найти способ поиска экзопланет.

Вся сложность заключалась в том, что звёзды, находясь на огромных расстояниях от нас, имеют очень маленький угловой размер, иначе говоря – видимый диаметр. Даже в самые крупные телескопы мы видим их точками на фоне ночного неба.

Теперь представьте, насколько сложно увидеть рядом с такой точкой, точку, которая будет в десятки раз меньше в диаметре? А ведь именно такие размеры имеют планеты в сравнении со звёздами.

Читайте также:  Первый после гагарина - все о космосе

  На помощь астрономам здесь приходит метод Лучевых скоростей, основанный на эффекте Доплера. Сам этот физический эффект был открыт австрийским математиком и физиком Кристианом Доплером.

  Что же такое эффект Доплера?

  Прежде чем ответить на этот вопрос, давайте вспомним, что же такое свет?

Светом в физике называют электромагнитное излучение. Есть видимый человеческому глазу диапазон излучения и невидимый. Наш глаз различает волны излучения определённой длины.

Если пропустить свет через призму, то мы увидим, что он разложится на знакомые нам с детства цвета радуги: красный, оранжевый, жёлтый, зелёный, голубой, синий и фиолетовый. Каждый цвет имеет свою длину волны. Мы с вами видим волны от фиолетового до красного цвета.

За ними начинается диапазон невидимого глазу излучения. Идём дальше. Волна красного цвета – самая длинная, а волна фиолетового – самая короткая.

  Теперь мы можем вернуться к вопросу, что такое эффект Доплера?

  Говоря простыми словами, эффект Доплера – это изменение длины волны излучения, вследствие движения источника наблюдения, относительно наблюдателя. Например, мы наблюдаем за неким объектом, излучающим свет.

Мы неподвижны, а объект движется.

Если объект движется от нас, то длина волны, излучаемого им света, начнёт увеличиваться и смещаться к диапазону красного цвета, если же объект движется к нам, то длина волны начнёт уменьшаться и смещаться к диапазону синего цвета.

  А теперь представьте, что мы наблюдаем с Земли за некой звездой, через специальный инструмент-спектрограф, который раскладывает электромагнитные волны, излучаемые ею, в цветовой спектр. В спектре звезды имеются все длины волн.

Но, проходя сквозь более холодные слои атмосферы звезды, излучение поглощается, поэтому в спектре появляются тёмные линии, которые называются фраунгоферовыми линиями, в честь немецкого физика Йозефа Фраунгофера, который точно измерил угловое положение этих линий.

Сами же линии соответствуют химическим элементам, находящимся в атмосфере звезды.

  Предположим, возле звезды есть некая планета. Как же нам её обнаружить?

  В школах нам говорили, что Земля вращается вокруг Солнца. Однако, это не совсем так. На самом деле и Земля и Солнце вращаются вокруг общего центра масс. И это применимо к любой другой звёздной системе.

Получается, что звезда тоже движется, правда, по довольно маленькой орбите. Заметьте: чем больше масса планеты, тем сильнее она будет раскачивать звезду.

А если масса планеты маленькая, то раскачивания могут быть всего десятки сантиметров в секунду.

  Итак, если мы будем смотреть через спектрограф на подобную звёздную систему, то, что мы увидим? А увидим мы, как на спектре звезды линии Фраунгофера станут смещаться. Если звезда приближается к нам, то, согласно Эффекту Доплера, линии будут смещаться в синюю область спектра, 

если звезда будет удаляться, то линии сместятся в красную область спектра. 

  Именно смещение спектральных линий звезды дадут понять, что она вращается вокруг какого-то общего центра масс, следовательно, рядом находится еще минимум одно небесное тело. Современный спектрограф HARPS, расположенный в Чили, может регистрировать раскачивания звезды минимум один метр в секунду. И это поистине здорово! На сегодня HARPS открыл примерно 75 экзопланет.

  А теперь вкратце поговорим о недостатках и ограничениях этого метода.

  Итак, в чём сложности?

  Во-первых, на поверхности далёкой звезды могут возникать пятна. Они вызывают изменения в профиле линий поглощения. Из-за этого может показаться, что звезда движется от нас или к нам. Что ошибочно можно принять за наличие экзопланеты.

 Во-вторых, мы, наблюдая за звёздной системой с Земли, тоже движемся в пространстве вокруг Солнца со скоростью в секунду. Это движение тоже нужно учитывать, делая выводы из полученных данных спектрометра.

  В-третьих, методом Доплера  мы можем открывать только сравнительно недалёкие от нас звёзды, которые находятся на расстоянии до 160 световых лет. Далёкие звёзды имеют низкую яркость или звёздную величину. Низкая яркость препятствует качественным и точным измерениям спектрометра.

  В-четвёртых, мы можем открывать только планеты с большой массой. Планеты с маленькой массой вызывают крошечные колебания звезды, которые не улавливает спектрометр.

  Ну, и, наконец, мы просто не заметим движения звезды, если звёздная система будет расположена полностью перпендикулярно лучу нашего зрения.

 Итак, друзья, в этом видео мы с вами рассмотрели первый метод открытия экзопланет – метод Доплера, в следующем видео поговорим о методе Транзитов.

 В конце передачи не пропустите ссылки на похожие выпуски!

  Всех Благ Вам Дорогие Мои! Чистого и Мирного Вам неба и пусть звёзды Вам благоволят.

ПОДРОБНОСТИ В ВИДЕО:Поделитесь ссылкой, если понравилось:

Источник: http://artemastronom.blogspot.com/2016/01/blog-post_20.html

Особенности распространения радиоволн на космических линиях связи

В статье рассматриваются особенности распространения радиоволн на космических линиях связи. Представлены результаты расчета скорости вращения вектора напряженности электрического поля в зависимости от частоты сигнала. Приведены результаты расчета возможного доплеровского сдвига частоты при связи с космическим аппаратом «Вояджер-1», запущенным в сентябре 1977 года.

Ключевые слова: эффект Доплера, доплеровский сдвиг, космические аппараты КА, ослабление сигнала, линия связи, «Вояджер-1».

С появлением первого радио, изобретенного А. С. Поповым в 1895 году, трудно даже было представить человечеству, как сильно это повлияет на жизнь человечества.

Именно благодаря радиосвязи улучшилась система оповещения народа о чрезвычайных ситуациях, а с первых дней Великой Отечественной войны она стала важнейшим средством оперативного управления войсками и информирования населения огромной страны.

С помощью радиосвязи в недавнее время также появилась возможность дистанционного управления устройствами, роботами, машинами и т. д. Возможности использования свободно распространяющейся электромагнитной волны в современном мире безграничны.

В последние десятилетия наблюдается бурное стремление изучить космическое пространство с помощью дистанционно управляемых космических кораблей. В связи с этим все чаще теряются в межзвездном пространстве космические аппараты КА (зонды), предназначенные для изучения комет, планет и других космических объектов.

Все эти потери губительно сказываются на состоянии государства. Чтобы минимизировать частые потери связи при дистанционном управлении объектов решается целый круг научно-технических задач.

Многие из них связаны с особенностями распространения радиоволн в околоземном пространстве, межзвездном газе и атмосфере других планет солнечной системы.

Ослабление сигнала вЗемной атмосфере имежзвездном газе

Общие потери сигнала на любой радиолинии складываются из основных и дополнительных потерь. Основные потери определяются ослаблением в свободном пространстве из-за расхождения лучей по причине сферического фронта волны.

Дополнительные потери обусловлены неоднородностью среды, результатом поглощения, изменения первоначальной поляризации волны под действием магнитного поля и т. д. На рис.

1 показано преломление радиоволны при излучении в космическое пространство на границе раздела двух сред с различными диэлектрическими проницаемостями.

Рис. 1. Преломление радиоволны за счет перехода из границы раздела сред с различными диэлектрическими проницаемостями

Радиоволны различных диапазонов по-разному проходят через земную атмосферу. Для космической связи оптимален диапазон от 1,5 до 30 сантиметров (ГГц). За пределами этого окна радиосигнал заметно ослабляется в атмосфере или даже может от нее отразиться.

На более коротких волнах потери энергии растут за счет поглощения молекулами воды и кислорода в тропосфере, а на более длинных волнах прохождению сигнала все сильнее мешает ионосфера, которая для волн длиннее 10–30 метров становится непреодолимой преградой.

Поглощение радиоволн также вызывается дождем и туманом, но, конечно, не в такой мере, как в оптическом диапазоне [2].

Также необходимо учесть, что чем меньше угол вхождения радиоволны в ионосферу, тем малая вероятность обратного отражения от слоя ионосферы (этот эффект уменьшается с ростом частоты).

Как известно, при наличии постоянного магнитного поля Земли, во время распространения в ионосфере волна расщепляется на две волны — обыкновенная и необыкновенная.

Они имеют отличительные друг от друга фазовые фронты, приводящие к повороту плоскости поляризации суммарной волны. В результате этого сигнал, принятый линейно поляризованной антенной испытывает поляризационные замирания. В табл.

1 приведены результаты расчета скорости вращения вектора напряженности электрического поля в зависимости от частоты сигнала [1].

Таблица 1

f, МГц 100 200 500 800 1000 2000 3000 5000
, град/с 1,7 0,43

Доплеровский эффект на космической линии связи

Одной из особенностей связи с движущимися объектами (с космическим аппаратом в том числе) является то, что принятые сигналы отличаются по частоте от передаваемых. Это явление получило название «эффект Доплера».

Суть его в том, что при передаче сообщения длительностьюоно принимается за время. При удалении источника излучения от наблюдателя частота сигнала уменьшается, а при приближении к наблюдателю — увеличивается.

Таким образом, при достаточно больших скоростях движущегося источника излучения относительно приемника возникают доплеровский сдвиг и деформация спектра сигнала.

Для компенсации влияния доплеровского эффекта в приемных устройствах применяют системы автоматической подстройки частоты местного гетеродина или в соответствии с орбитой ИСЗ применяют соответствующие поправки в несущую частоту передатчика.

К сожалению, ни один из этих методов не способен на высоких скоростях движения небесных тел друг относительно друга устранить искажения спектра сигнала.

В 1977 году был запущен в космическое пространство автоматический зонд «Вояджер-1», исследующий солнечную систему и её окрестности. В данный момент он находится на границе Солнечной системы и вскоре ее покинет.

Через несколько лет, по данным от ученых NASA, сигнал станет столь слабым, что принять его уже будет невозможно. На 10 января 2012 года текущая скорость космического путешественника относительно Солнца — 17,0 км/с [3].

Частоты связи, на которых производится передача данных — 2295 и 8418 МГц [4]. Определим возможный сдвиг частоты при связи с этим кораблем.

МГц;

МГц;

В заключение можно отметить несколько важных аспектов. Во-первых, при правильном выборе рабочих частот на космических радиолиниях ослабление сигнала определяется в основном ослаблением в свободном пространстве. Во-вторых, доплеровский эффект пропорционален частоте сигнала и проявляется все значительней с увеличением скорости движущегося объекта относительно наблюдателя.

Литература:

  1.                Л. К. Андрусевич, А. А. Ищук, К. А. Лайко, Антенны и распространение радиоволн: учебник для вузов, Новосибирск: Изд-во НГТУ, 2006.-396 с.
  2.                Электронный ресурс, сайт: http://www.vokrugsveta.ru/vs/article/5956/, дата обращения: 22.01.2016г.

Источник: https://moluch.ru/archive/107/25611/

Эффект Доплера

Эффект Доплера в астрономии

Читайте также:  Звезда канопус - все о космосе

Замечали ли вы когда-нибудь, что звук сирены машины имеет различную высоту при её приближении или отдалении относительно вас?

Гудок поезда

Разность частоты гудка или сирены отдаляющегося и приближающегося поезда или машины являются, пожалуй, самым наглядным и распространённым примером эффекта Доплера. Теоретически открытый австрийским физиком Кристианом Доплером, этот эффект впоследствии сыграет ключевую роль в науке и технике.

Эффект Доплера

Для наблюдателя длина волны излучения будет иметь различное значение при различных скоростях источника относительно наблюдателя.

При приближении источника длина волны будет уменьшаться, при отдалении – увеличиваться. Следовательно, с длинной волны меняется и частота.

Поэтому частота гудка приближающегося поезда заметно выше частоты гудка при его отдалении. Собственно, в этом и заключается суть эффекта Доплера.

Эффект Доплера лежит в основе работы многих измерительных и исследовательских приборов. Сегодня его повсеместно применяют в медицине, авиации, космонавтики и даже быту.

С помощью эффекта Доплера работает спутниковая навигация и дорожные радары, аппараты УЗИ и охранная сигнализация. Эффект Доплера получил широко применим в научных исследованиях.

Пожалуй, наиболее он известен именно в астрономии.

Объяснение эффекта

Чтобы понять природу эффекта Доплера достаточно взглянуть на водную гладь. Круги на воде прекрасно демонстрируют все три составляющие любой волны. Представим, что какой-нибудь неподвижный поплавок создаёт круги.

В таком случае период будет соответствовать времени, прошедшему между испусканием одного и последующего круга. Частота равняется количеству кругов, испущенных поплавком за определённый промежуток времени.

Длина волны будет равна разности радиусов двух последовательно испущенных кругов (расстоянию между двумя соседними гребнями).

Представим, что к этому неподвижному поплавку приближается лодка. Так как она движется навстречу к гребням, к скорости распространения кругов прибавиться скорость лодки. Поэтому относительно лодки скорость встречных гребней увеличиться. Длина волны в тоже время уменьшится.

Следовательно, время, которое пройдёт между ударами двух соседних кругов о борт лодки, уменьшиться. Другими словами, уменьшится период и, соответственно, увеличится частота. Точно также для удаляющейся лодки скорость гребней, которые теперь будут догонять её, уменьшиться, а длина волны увеличится.

Что означает увеличение периода и уменьшения частоты.

Теперь представим, что поплавок расположен между двумя неподвижными лодками. Причём, рыбак на одной из них тянет поплавок к себе. Приобретая скорость относительно глади, поплавок продолжает испускать точно такие же круги.

Однако центр каждого последующего круга будет смещён относительно центра предыдущего в сторону лодки, к которой приближается поплавок. Поэтому со стороны этой лодки расстояние между гребнями будет уменьшено.

Получается, до лодки с рыбаком, что тянет поплавок, придут круги с уменьшенной длинной волны, а значит и с уменьшенным периодом и увеличенной частотой. Аналогичным образом до другого рыбака дойдут волны с увеличенной длиной, периодом и уменьшенной частотой.

Разноцветные звёзды

Спектры различных звезд

Такие закономерности изменения характеристик волн на водной глади в своё время заметил Кристиан Доплер.

Он описал каждый такой случай математически и применил полученные данные к звуку и свету, которые также имеют волновую природу.

Доплер предположил, что таким образом цвет звёзд напрямую зависит от того, с какой скоростью они приближаются или удаляются от нас. Эту гипотезу он изложил в статье, которую презентовал в 1842 году.

Заметим, что насчёт цвета звёзд Доплер заблуждался. Он полагал, что все звёзды излучают белый цвет, который впоследствии искажается из-за их скорости относительно наблюдателя. На самом деле эффект Доплера влияет не на цвет звёзд, а на картину их спектра.

У отдаляющихся от нас звёзд все тёмные линии спектра будут увеличивать длину волны – смещаться в красную сторону. Этот эффект закрепился в науке под названием «красное смещение».

У приближающихся звёзд напротив, линии стремятся к части спектра с более высокой частотой – фиолетовому цвету.

Такую особенность линий спектра, основываясь на формулах Доплера, теоретически предсказал в 1848 французский физик АрманФизо. Экспериментально это было подтверждено в 1868 году Уильямом Хаггинсом, который внёс большой вклад в спектральное исследование космоса. Уже в 20 веке эффект Доплера для линий в спектре получит название «красное смещение», к которому мы ещё вернёмся.

Концерт на рельсах

Эффект Доплера в опыте с поездом

В 1845 году голландский метеоролог Бёйс-Баллот, а затем и сам Доплер, провели серию экспериментов для проверки «звукового» эффекта Доплера. В обоих случаях они использовали, оговорённый ранее, эффект гудка приближающегося и отдаляющегося поезда. Роль гудка им выполняли группы трубачей, которые играли определённую ноту, находясь в открытом вагоне движущегося состава.

Бёйс-Баллот пускал трубачей мимо людей с хорошим слухом, которые фиксировали изменение ноты при различной скорости состава. Затем он повторил этот эксперимент, поместив трубачей на платформу, а слушателей – в вагон. Доплер же фиксировал диссонанс нот двух групп трубачей, которые приближались и отдалялись от него одновременно, играя одну ноту.

В обоих случаях эффект Доплера для звуковых волн успешно подтвердился. Более того, каждый из нас может провести этот эксперимент в повседневной жизни и подтвердить его для себя. Поэтому не смотря на то, что эффект открытие Доплера подвергалось критике со стороны современников, дальнейшие исследования сделали его неоспоримым.

Красное смещение

Красное смещение

Как отмечалось ранее, эффект Доплера применяется для определения скорости космических объектов относительно наблюдателя.

Тёмные линии на спектре космических объектов изначально всегда расположены в строго фиксированном месте. Это место соответствует длине волны поглощениям того или иного элемента.

У приближающегося или удаляющегося объекта все полосы меняют своё положения в фиолетовую или красную область спектра соответственно.

Сравнивая спектральные линии земных химических элементов с аналогичными линиями на спектрах звёзд, можно оценить с какой скоростью приближается или удаляется от нас объект.

Красное смещение на спектрах галактик было обнаружено американским астрономом Весто Слайфером в 1914 году. Его соотечественник Эдвин Хаббл сопоставлял, открытые им же, расстояния до галактик с величиной их красного смещения.

Так в 1929 году он пришёл к выводу, что чем дальше галактика, тем быстрее она удаляется от нас. Как окажется в последствие, открытый им закон был довольно неточен и не совсем верно описывал реальную картину.

Однако Хаббл задал верную тенденцию для дальнейших исследований других учёных, которые впоследствии введут понятия космологического красного смещения.

Космологическое красное смещение

Космологическое красное смещение

В отличие от доплеровского красного смещение, возникающие из-за собственного движения галактик относительно нас, космологическое возникает из-за расширения пространства. Как известно, Вселенная равномерно расширяется по всему своему объёму.

Поэтому чем дальше друг от друга две галактики, тем с большими скоростями они разбегаются друг от друга. Так каждый мегапарсек между галактиками каждую секунду удалят их друг от друга примерно на 70 километров. Это величина называется постоянной Хаббла.

Что интересно, изначально сам Хаббл оценил свою постоянную в целых 500 км/с на мегапарсек.

Это объясняется тем, что он никак не учитывал то, что красное смещение любой галактики складывается из двух разных красных смещений. Помимо того, что галактиками движет расширение Вселенной, они также совершают собственные движения.

Если релятивистское красное смещение имеет одинаковое распределение для всех расстояний, то доплеровское принимает самые непредсказуемые расхождения.

Ведь собственное движение галактик внутри их скоплений зависит лишь от взаимных гравитационных воздействий.

Близкие и далёкие галактики

Галактика Андромеда или M31

Между близкими галактиками постоянная Хаббла практически не применима для оценки расстояний между ними.

К примеру, галактика Андромеда относительно нас имеет суммарное фиолетовое смещение, так как приближается к Млечному Пути со скоростью около 150 км/с.

Если мы применим к ней закон Хаббла, то она должна удаляться от нашей галактики со скоростью 50 км/с, что совсем не соответствует реальности.

Для далёких же галактик доплеровское красное смещение практически неощутимо. Их скорость удаления от нас лежит в прямой зависимости от расстояния и с небольшой погрешностью соответствует постоянной Хаббла.

Так самые далёкие квазары удаляются от нас скоростью большей, чем скорость света. Как это ни странно, это не противоречит теории относительности, ведь это скорость расширяющегося пространства, а не самих объектов.

Поэтому важно уметь различать доплеровское красное смещение от космологического.

Также стоит отметить, в случае электромагнитных волн имеют место быть и релятивистские эффекты. Сопутствующие искажение времени и изменение линейных размеров при движении тела относительно наблюдателя также влияют на характер волны. Как и в любом случае с релятивистскими эффектам

Эффект Доплера в астрономии

Несомненно, без эффекта Доплера, с помощью которого произошло открытие красного смещения, мы бы не знали о крупномасштабной структуре Вселенной. Однако не только этим астрономы обязаны этому свойству волн.

Эффект Доплера позволяет обнаружить незначительные отклонения в положении звёзд, которые могут создавать планеты, обращающиеся вокруг них. Благодаря этому было открыто сотни экзопланет. Также он используется для подтверждения наличия экзопланет, предварительно обнаруженных с помощью других методов.

Двойная система коричневых карликов

Эффект Доплера сыграл решающую роль в исследовании тесных звёздных систем. Когда две звезды настолько близки, что их невозможно увидеть по-отдельности, на помощь астрономам приходит эффект Доплера. Он позволяет проследить невидимое взаимное движение звёзд по их спектру. Такие звёздные системы даже получили название «оптически двойные».

С помощью эффекта Доплера можно оценить не только скорость космического объекта, но и скорость его вращения, расширения, скорость его атмосферных потоков и многого другого.

Скорость колец Сатурна, расширения туманностей, пульсации звёзд – всё это измерена благодаря этому эффекту. С помощью него даже определяют температуру звёзд, ведь температура также являет собой показатель движения.

Можно сказать, что практически всё, что связано со скоростями космических объектов, современные астрономы измеряют, использую именно эффекту Доплера

Источник

by HyperComments

Источник: https://vinteresnom.com/kosmos/effekt-doplera/

Ссылка на основную публикацию