Гало – все о космосе

Галактика млечный путь

В Галактике Млечный путь находится Солнечная система, Земля и все звезды, которые видны невооруженным глазом. Вместе с Галактикой Треугольника, Андромеды и карликовыми галактиками и спутниками она формирует Местную группу галактик, входящую в Сверхскопление Девы.

По древней легенде, когда Зевс решил сделать своего сына Геракла бессмертным, то подложил его к груди своей жены Геры испить молока. Но супруга проснулась и, увидев, что кормит неродного ребенка, оттолкнула его. Струя молока брызнула и обратилась в Млечный путь.

В советской астрономической школе его называли просто «система Млечный путь» или «наша Галактика». Вне западной культуры существует множество названий этой галактики. Слово «млечный» заменяется другими эпитетами. Галактика состоит из порядка 200 млрд звезд. Основное их количество расположено в форме диска.

Большая часть массы Млечного пути содержится в гало из темной материи.

В 1980 годах ученые выдвинули мнение, что Млечный путь – это спиральная галактика с перемычкой. Гипотеза подтвердилась в 2005 при помощи телескопа Спитцера. Выяснилось, что центральная перемычка галактики больше, чем считалось раньше. Диаметр галактического диска составляет приблизительно 100 тыс. световых лет.

В сравнении с гало, он вращается гораздо быстрее. На разных расстояниях от центра его скорость неодинаковая. Изучения вращения диска помогли оценить его массу, которая в 150 миллиардов больше массы Солнца. Поблизости плоскости диска собраны молодые звездные скопления и звезды, которые образуют плоскую составляющую.

Ученые предполагают, что множество галактик имеют в своем ядре черные дыры.

В центральных участках Галактики Млечный путь собрано большое количество звезд. Расстояние между ними намного меньше, чем в окрестностях Солнца. Длина галактической перемычки по подсчетам ученых составляет 27 тыс. световых лет.

Она проходит через центр Млечного пути под углом в 44 градуса ± 10 градусов к линии между центром галактики и Солнцем. Ее составляющая – это преимущественно красные звезды. Перемычка окружена кольцом, которое называется «Кольцо в 5 килопарсек». Оно содержит большое количество молекулярного водорода.

Также это активный регион звездообразования в Галактике. Если наблюдать из галактики Андромеды, то перемычка Млечного пути была бы его яркой частью.

Так как Галактика Млечный путь считается спиральной, у нее имеются спиральные рукава, которые располагаются в плоскости диска. Вокруг диска расположена сферическая корона. Солнечная система находится в 8,5 тыс.

парсек от центра галактики. По последним наблюдениям можно сказать, что наша Галактика имеет 2 рукава и еще пару рукавов во внутренней части.

Они переходят в четырехрукавную структуру, которая наблюдается в линии нейтрального водорода.

Гало галактики имеет сферическую форму, которая выходит за пределы Млечного пути на 5–10 тыс. световых лет. Его температура примерно составляет 5*105  К. Гало состоит из старых, маломассивных неярких звезд.

Их можно встретить и в виде шаровых скоплений, и поодиночке. Основную массу галактики составляет темная материя, формирующая гало темной материи. Его масса примерно 600–3000 млрд массы Солнца.

Звездные скопления и звезды гало двигаются вокруг галактического центра по вытянутым орбитам. Гало вращается очень медленно. 

История открытия Галактики Млечный путь

Множество небесных тел объединяется в разнообразные вращающиеся системы. Таким образом, Луна вращается вокруг Земли, а спутники больших планет образуют свои системы. Земля и другие планеты вращаются вокруг Солнца. У ученых возникал вполне логичный вопрос: не входит ли Солнце в еще большую по размерам систему?

Впервые на этот вопрос пытался ответить Уильям Гершель. Он высчитал количество звезд в разных уголках неба и выяснил, что в небе есть большой круг – галактический экватор, делящий небо на две части. Здесь количество звезд оказалось наибольшим.

Чем ближе тот или иной участок неба расположен к этому кругу, тем больше на нем звезд. В конечном итоге было обнаружено, что именно на экваторе галактики находится Млечный путь.

Гершель пришел к заключению, что все звезды образуют одну звездную систему. 

Изначально считалось, все, что есть во Вселенной, является частью нашей галактики. Но еще Кант утверждал, что некоторые туманности могут быть отдельными галактиками, как и Млечный путь. Только когда Эдвин Хаббл измерил расстояние до некоторых спиральных туманностей и показал, что они не могут входить в состав Галактики, гипотеза Канта была доказана.

Будущее Галактики

В будущем возможны столкновения нашей Галактики с другими, в том числе и с Андромедой. Но конкретных предсказаний пока что нет. Считается, что через 4 миллиарда лет Млечный путь поглотит Малое и Большое Магелановые Облака, а через 5 миллиардов лет его поглотит Туманность Андромеды.

Планеты Млечного пути

Несмотря на то, что звезды постоянно рождаются и умирают, их количество четко подсчитано. Ученые считают, что вокруг каждой звезды вращается хотя бы одна планета. Значит, во Вселенной существует от 100 до 200 млрд планет.

Ученые, которые работали над этим утверждением, изучали звезды «красные карлики». Они меньше Солнца и составляют 75% из всех звезд Галактики Млечный путь.

Особое внимание было уделено звезде Kepler-32, которая «приютила» 5 планет.

Обнаружить планеты гораздо сложнее, чем звезды, ведь они не излучают света. Мы можем уверенно сказать о существовании планеты только тогда, когда она заслонит собой свет звезды.

Существуют и планеты, которые похожи на нашу Землю, но их не так уж и много. Есть множество типов планет, например, планеты-пульсары, газовые гиганты, бурые карлики… Если планета состоит из каменных пород, она будет мало похожа на Землю.

Последние исследования утверждают, что в галактике имеется от 11 до 40 млрд планет, схожих с Землей. Ученые исследовали 42 звезды, похожие на Солнце и обнаружили 603 экзопланеты, 10 из которых соответствовали критериям поиска. Было доказано, что все планеты, схожие с Землей, могут поддерживать нужную температуру, для существования жидкой воды, что, в свою очередь, поможет возникнуть жизни.

У внешнего края Млечного пути были обнаружены звезды, которые двигаются особым образом. Они дрейфуют у края. Ученые предполагают, что это все, что осталось от галактик, которые поглотил Млечный путь. Их столкновение случилось множество лет тому назад.

Галактики спутники

Как мы уже говорили, Галактика Млечный путь является спиральной. Она представляет собой спираль неидеальной формы. На протяжении долгих лет ученые не могли найти объяснение выпуклости галактики.

Сейчас все пришли к выводу, что это происходит из-за галактик-спутников и темной материи. Они очень мелкие и не могут влиять на Млечный путь. Но когда темная материя двигается через Магелановые Облака, создаются волны. Они и влияют на гравитационные притяжения.

Под этим действием водород улетучивается из галактического центра. Облака обращаются вокруг Млечного пути.

Хоть Млечный путь и называют по многим параметрам уникальным, он не является большой редкостью. Если учесть тот факт, что в поле зрения имеется примерно 170 млрд галактик, можно утверждать о существовании галактик, похожих на нашу. В 2012 году астрономами была найдена точная копия Млечного пути.

Она даже имеет два спутника, которые соответствуют Магелановым Облакам. Кстати, предполагают, что через пару миллиардов лет они растворятся. Находка подобной галактики была невероятной удачей. Ее назвали NGC 1073.

Она так сильно похожа на Млечный путь, что астрономы изучают ее для того, чтобы больше узнать о нашей галактике.

Галактический год

Земной год – это время, за которое планета делает полный оборот вокруг Солнца. Таким же образом Солнечная система вращается вокруг черной дыры, которая расположена в центре галактики. Полный ее оборот составляет 250 млн лет.

Когда описывают Солнечную систему, редко упоминают то, что она двигается в космическом пространстве, как и все в мире. Скорость ее движения 792000 км в час относительно центра Галактики Млечный путь. Если сравнить, то мы, двигаясь с подобной скоростью, могли бы обойти весь мир за 3 минуты.

Галактический год – это время, за которое Солнце делает полный оборот вокруг Млечного пути. По последним подсчетам солнце прожило 18 галактических лет. 

Источник: http://kvant.space/galaktika-mlechnyy-put

Ученые выяснили, откуда взялись звезды в гало Млечного Пути

Несмотря на многие века исследований и наблюдений, наши знания о нашей родной галактике Млечный Путь по-прежнему содержат очень много пробелов.

К настоящему моменту, если подумать, мы более-менее выяснили ее предположительный диаметр – порядка 100-180 тысяч световых лет, а также предполагаемое количество звезд, которое может составлять от 100 до 400 миллиардов.

В то же время в течение последних десятилетий астрономы очень заинтересованы в истории эволюции нашей галактики.

Например, ученые уже давно ищут ответ на вопрос о том, откуда появилось гало нашей галактики – гигантская структура из звезд, темной материи и газа, окружающая галактический диск Млечного Пути сверху и снизу.

Согласно более ранним предположениям, это гало могло образоваться из остатков более компактных галактик, которые когда-то слились или были поглощены Млечным Путем.

Однако результаты нового исследования, проведенного международной командой астрономов, указывают на то, что находящиеся в нем звезды могли родиться внутри Млечного Пути, а затем были из него выброшены.

О своих выводах команда, состоящая из ученых Австралийского национального университета, Калифорнийского технологического института, а также ряда других учебных и научных учреждений и работавшая под руководством Маргии Бергманн из Института астрономии общества Макса Планка, поделилась в журнале Nature.

Читайте также:  Галактика m60 - все о космосе

Художественное представление галактики Млечный Путь

В своем исследовании астрономы положились на данные, собранные гавайской Обсерваторией Кека, с помощью которых ученые выяснили особенности химического состава 14 звезд, находящихся внутри галактического гало.

Эти звезды находятся в двух разных частях этого гало – звездных сверхскоплениях Tri-And и A13, каждое из которых расположено примерно в 14 тысячах световых лет над и под плоскостью галактического диска Млечного Пути.

В качестве дополнительного источника данных спектров исследователи использовали Очень большой телескоп (VLT) Европейской Южной обсерватории в Чили.

Сравнив химический состав исследуемых звезд с теми, которые были обнаружены внутри других космических структур, ученые отметили, что их химические составы оказались практически идентичными.

Они оказались похожими не только между собой и другими изучаемыми группами, но еще и близко соответствовали составам звезд, обнаруженным внутри внешнего диска Млечного Пути.

Компьютерная модель Млечного Пути и его компактного соседа, карликовой галактики Стрельца

Исходя из этого, ученые сделали вывод, что звездные популяции в галактическом гало изначально образовались внутри Млечного Пути, но затем мигрировали в пространство над и под галактическим диском.

Это явление исследователи называют «галактическим выселением».

Объясняется оно тем, что звезды могли быть вытолканы другими достаточно массивными карликовыми галактиками, которые проходили через Млечный Путь в прошлом.

Моделирование возмущений, вызванных гравитационным взаимодействием Млечного Пути с близкой карликовой галактикой. Показаны звезды в гало, положение которых учитывалось при проверке модели

360-градусная панорама Млечного Пути (состоит из множества фотографий)

Данное открытие интересно сразу по двум причинам.

С одной стороны, оно свидетельствует в пользу предположения о том, что звезды, находящиеся в галактических гало, изначально появляются внутри галактических дисков, а затем могут быть выброшены за их пределы.

С другой – показывает, что галактический диск Млечного Пути и его динамика представляют собой гораздо более сложные структуру и явление, чем считалось ранее.

Далее астрономы планируют провести спектральный анализ дополнительных звезд из сверхгрупп Tri-And и A13, а также исследовать звездные скопления, располагающиеся еще дальше от галактического диска. Кроме того, ученые хотели бы определить массы и возраст этих звезд. На основе этих данных исследователи могли бы сделать предположение о том, когда именно происходило это галактическое выселение.

Подобные исследования позволят нам точнее разобраться в эволюции галактик. А в сочетании с текущими усилиями ученых по изучению ядер галактик, а также поиску связи между находящимися в них сверхмассивными черными дырами и звездообразованием мы постепенно приближаемся к полному пониманию того, как наша Вселенная эволюционировала до того состояния, в котором она сейчас находится.

Источник: https://hi-news.ru/research-development/uchenye-vyyasnili-otkuda-vzyalis-zvezdy-v-galo-mlechnogo-puti.html

Что мы знаем о гало | Лаборатория космических исследований

vribinek в вт, 07/10/2014 – 20:33

Мне хотелось бы поведать о моем любимом небесном явлении. Оно нередко озаряет небо своими радужными узорами, и я сама весьма часто его наблюдаю. Это явление называется ГАЛО

Гало – общее название обширного класса оптических явлений в атмосфере, связанных с преломлением и отражением лучей света в ледяных кристаллах облаков, главным образом тех, которые образуют высокие перисто-слоистые облака. Гало обычно появляется вокруг Солнца или Луны, иногда вокруг других мощных источников света, таких как уличные огни. Существует множество типов гало. Вид наблюдаемого гало зависит от формы и расположения кристаллов.

Иногда в морозную погоду гало образуется кристаллами очень близко к земной поверхности. В этом случае кристаллы напоминают сияющие драгоценные камни. Такое явление называют алмазной пылью.

А теперь о каждом виде подробнее.

  22° гало

При некоторых условиях атмосфера бывает насыщена мелкими 6-гранными кристаллами, многие грани которых образуют прямой угол с плоскостью, проходящей через Солнце, наблюдателя и эти кристаллы.

Такие грани отражают поступающие лучи света с отклонением на 22°, образуя красноватое с внутренней стороны гало, но оно может состоять и из всех цветов спектра.

Такой вид гало называется малйм гало или гало 22 (см.фото наверху).

 46° гало

Гало с угловым радиусом 46°(большое гало) встречается редко, располагающееся концентрически вокруг 22-градусного гало. Его внутренняя сторона тоже имеет красноватый оттенок. Причиной этого также является преломление света, происходящее в этом случае на образующих прямые углы гранях кристаллов.

  Касательные дуги 

Верхние и нижние касательные дуги-это ярко окрашенные дуги различной длины, примыкающие гало с угловыми радиусами 22 и 46. Иногда верхняя и нижняя касательные дуги соединяются и образуют опоясывающее гало. Кристаллы — колоннообразные, главная ось горизонтальна.

  Горизонтальная дуга.

Яркая дуга, окрашенная в цвета радуги (красная сверху). Простирается примерно на 44 ниже солнца. Вызывается преломлением лучей света, входящих в призмы через их боковые грани.

   Дуги Парри.

Слабоокрашенные дуги, прилегающие к малому гало (как касательные дуги). Наблюдаются сравнительно редко. Бывают четырех видов. Верхние дуги Парри: выгнутые к солнцу, вогнутые к солнцу. Нижние дуги Парри: выгнутые к солнцу, вогнутые к солнцу. Кристаллы — колоннообразные, главная ось, верхняя и нижняя грани горизонтальны, так называемая ориентация Парри.

  Паргелии.

Резко очерченное яркое пятно на небосводе. Обращенный к солнцу край его — красный, затем следуют остальные цвета спектра.

Внешний край ложного солнца заканчивается обычно в виде небольшого светлого хвоста.

Разновидностей паргелиев довольно много: 22° паргелии, 44° и 66° паргелии, 120° паргелии, Паргелии Лилеквиста, в антисолярной точке нередко тоже наблюдается ложное солнце (антгелий).

  Паргелический круг.

Слабоокрашенный круг, проходящий через диск солнца параллельно горизонту. Обусловлен отражением лучей света от боковых сторон кристаллов с вертикальной гранью.

Подробная схема этих видов, сделанная в программе HalSim361.

  Световой столб.

Возникает,когда солнце или Луна находятся вблизи горизонта.Тянется вертикально вверх от диска светила на расстоянии 15 °.во время вечерней зари окрашен в красный цвет.Когда в воздухе парит алмазная пыль,световые столбы появляются сразу от множества фонарей.Это явление носит название-световой лес.

  Еще виды

Дуга Вегнера, дуги Гринлера, Дуга Трикера ,субпаргелии и субпаргелический круг, субпаргелии Лилеквиста ,дуги Ловица
отраженные дуги Ловица ,120° дуги Ловица ,46° дуги Ловица, дуга Хастингса,солнечная петля ,субсолнечная петля ,9° гало, 18° гало ,20° гало ,23° гало ,24° гало ,35° гало,9° tangent arcs (= 9° column arcs) — аналог опоясывающего гало,18° tangent arcs ,20° tangent arcs ,23° tangent arcs (фотографии отсутствуют пока еще), 24° tangent arc .

  Виды гало, природа которых еще изучена не до конца: :Эллиптические гало, различают по размеру(1x, 2x, 3x, 4x),Кольцо Боттлингера (Bottlinger’s rings), эллипс вокруг субсолнца, бывает двух размеров(1x Bottlinger’s ring , 2x Bottlinger’s rings),19° дуги, 19° lateral arcs, 19° верхняя дуга, 19° нижняя дуга, 28° Гало ,Lascar arcs , upper tangent Lascar arc A, lower tangent Lascar arc, supralateral Lascar arcs, infralateral Lascar arcs, 28° паргелии, 28° верхний паргелий.

Необъясняемые гало:Moilanen arc, 5° гало , 12° гало, паргелические вспышки.

Конечно же, гало не может, как вы уже знаете, появиться без приломления света через особые кристаллы, находящиеся в облаках. Вид гало, его яркость, место положения на небе – все это непосредственно зависит от того через какие кристалллы произошло преломление и как они распологались в воздухе в тот момент времени.

Основные формы кристаллов льда:

1) Шестиугольные правильные: -плоские призмы (plate)

-колоннообразные (column)

2) Шестиугольные неправильной формы: -скошеные, неправильной формы

-с вкраплениями (plates with inner structures decorated plates)

3) Пирамидальные : -плоские пирамидальные (plate)

-колоннообразные пирамидальные (column)

4) Другие (изредка гало появляется благодаря другим формам кристаллов, например, кубических, либо склееных нескольких 6-ти угольных)

Расположение кристаллов в воздухе:

1) Неупорядоченные кристаллы: -произвольно ориентированные шестиугольные кристаллы

-случайно ориентированные пирамидальные кристаллы

2) Упорядоченные кристаллы: -горизонтально ориентированные колоннообразные кристаллы -горизонтально ориентированные плоские призмы -ориентированные плоские пирамидальные кристаллы

-ориентированные колоннообразные пирамидальные кристаллы

3) Сложно упорядоченые кристаллы (двойная ориентация): -ориентация Парри

-ориентация Ловица

По виду гало часто можно определить какие же кристаллы сейчас в атмосфере, поэтому важно знать какие кристаллы каким видам гало способствуют:

Случайно ориентированные пирамидальные кристаллы (random pyramidal) образуют множество круглых гало- 9°, 18°, 20°, 22°, 23°, 24°, 35° и 46°.

 Случайно ориентированные кристаллы (random) способствуют появлению стандартных малого и большого гало, т.е.  22° и  46°.

 Благодаря кристаллам-пластинкам (plate) появляются 22 паргелии, паргелический круг, 120 паргелии, паргелии Лиликвеста и зенитная дуга.

Ну, и последнее, о чем хотелось бы сказать в данной статье, посвященной физике наблюдений гало, это то, что множество видов гало, конечно же, могут наблюдаться на небе одновременно, что делает это явление особенно удивительным и красивым.

Многообразие его видов, объединившихся на небосводе в единый радужный узор, создает неповторимые “картины”, которыми хочется любоваться снова и снова. И, кстати, гало – это нередкое явление. К примеру я  по своей статистике наблюдаю данный природный феномен в среднем раз в неделю.

Поэтому как можно чаще обращайте свой взор к бездонным просторам небес. Там всегда найдется что-нибудь интересное и особенное! 

Источник: http://www.spacephys.ru/chto-my-znaem-o-galo

Масса галактик – Все о космосе

Не так много лет назад одной из наиболее надежных областей внегалактической астрономии было определение масс галактик. Для этой цели были разработаны хорошие методы, собраны данные обширных измерений и мы имели значения масс, которым все доверяли.

Читайте также:  Специальная теория относительности - все о космосе

Несколько вызывающих беспокойство проблем возникло в 60-е годы, особенно в связи с массами, полученными по данным измерений скоростей галактик в скоплениях, которые казались слишком большими.

Но в общем было чувство, что такие простые задачи, как определение массы Млечного Пути или галактики в Андромеде, решены.

Однако к 1980 г. произошел удивительный поворот, оставивший нас сейчас в состоянии полного недоумения в вопросе о массах галактик.

По-видимому, ни один из полученных в прошлом ответов не верен по причине совершенно неожиданного и до тех пор не осознававшегося затруднения.

Перед тем, как броситься с головой в эту загадку, сделаем обзор основных методов, использовавшихся астрономами в этих сложных исследованиях.

Нетрудно оценить общую массу галактики, используя очень простые предположения и опираясь на легко измеряемые величины. Например, масса нашей Галактики может быть оценена по ее известному радиусу и числу звезд вблизи Солнца.

Все строится на простых, но не очень точных предположениях о том, что мы живем в области с типичной звездной плотностью и по форме наша Галактика близка к сфере.

Если сосчитать звезды в окрестности Солнца и добавить сюда массу газа и пыли, то получится плотность около 3/100 солнечной массы на кубический световой год. Радиус Галактики около 15 тысяч световых лет, так что в предположении сферической формы объем составляет около 13 триллионов кубических световых лет.

Общая масса, заключенная в сфере, равна произведению объема на плотность, и таким образом наше приближение дает величину 400 миллиардов масс Солнца. Этот результат удивительно близок к значениям, получаемым более точными методами.

На самом деле плотность звезд в нашей Галактике сильно меняется от места к месту и, разумеется, звезды не распределены равномерно внутри сферы. Тем не менее простой подсчет отдельных звезд вблизи нас и обобщение локальной плотности дают хорошее первое приближение и наглядное представление об огромности массы нашей Галактики.

Гораздо лучшим методом определения массы галактики является метод, основанный на измерении скорости вращения галактики. Метод ненамного сложнее определения массы Солнца по скоростям орбитального движения планет.

Если бы Солнце было массивнее, чем сейчас, то Земле пришлось бы быстрее двигаться вокруг него по орбите, иначе она упала бы на Солнце. Менее массивное Солнце с меньшей силой гравитационного притяжения означало бы необходимость более медленного движения Земли, в противном случае она улетела бы далеко в космическое пространство.

Таким образом, скорость движения Земли по орбите в точности соответствует значению для устойчивой орбиты вокруг звезды с массой в одну солнечную.

Точно так же Солнце и другие звезды движутся по орбитам вокруг центра нашей Галактики со скоростями, определяемыми ее массой. Если измерить скорость и определить размер орбиты, то можно вычислить массу, управляющую орбитой. Однако имеется одно затруднение.

В Солнечной системе почти вся масса сосредоточена в Солнце — в центре системы, в то время как в галактике звезды распределены таким образом, что на болыпииство из них действует значительная сила притяжения со стороны массы, расположенной вне (в противоположность той, что находится внутри) их орбит.

Это значит, что общую массу галактики можно определить лишь по скоростям звезд во внешних частях, для которых вся галактика находится внутри орбиты звезды.

Астроном должен определить скорости звезд или другого вещества (обычно это возбужденный газ, так как его скорость легче всего измерить) на всем протяжении от центра до края в поисках точки, где значения скоростей становятся похожими на те, что соответствуют только внутренней массе.

Это называется кеплеровской частью кривой, так как именно Кеплер нашел связь между скоростями планет и расстояниями их до Солнца — открытие, приведшее Ньютона к открытию закона тяготения. Внутри кеплеровской части кривой скорости звезд увеличиваются по мере удаления от центра (см. рис.).

Потом скорость выходит на постоянный уровень, после чего кривая вращения начинает падать. За точкой поворота все скорости кеплеровские и они должны дать величину массы галактики. Для большей точности астрономы подгоняют под весь набор скоростей, измеряемых при различных положениях, разные модели распределения массы в галактике, узнавая таким образом кое-что об этом распределении, а также значение общей массы.

В 60-е годы эти исследования велись весьма интенсивно. Астрономы определили массы многих галактик и нашли зависимость между светимостью галактики и ее массой и между хаббловским типом и массой.

Обычно галактики типов Sa и Sb имели большие массы на единицу светимости, чем галактики других типов, то есть их звезды в среднем менее яркие, чем звезды в галактиках типа Sc и Irr. Для всех типов было впечатление, будто кривая вращения загибается вниз вблизи границы наблюдаемой области.

Казалось, природа так построила галактики, чтобы мы как раз могли увидеть на самых внешних их звездах начало кеплеровского движения. Кривые хорошо согласовывались с моделями распределения массы, и распределение вещества в галактиках выглядело весьма разумным.

Другой метод определения масс галактик может быть применен к тем из них, что являются членами двойных систем. Две обращающиеся вокруг друг друга галактики должны подчиняться закону тяготения Ньютона, утверждающего зависимость размеров орбит и скоростей от масс галактик.

Наблюдая всего одну двойную галактику, нельзя надеяться использовать этот факт, так как орбитальные периоды составляют миллионы и миллиарды лет — это слишком долго, чтобы ждать.

К тому же галактики видны лишь с одного направления, так что нельзя определить угол наклона орбиты к лучу зрения. Но эти трудности преодолимы, если мы наблюдаем много двойных галактик и определяем их параметры статистически.

Хотя мы не можем проследить ни одну данную пару на протяжении всей орбиты, можно пронаблюдать достаточно много двойных галактик, чтобы получить их средние массы.

Чтобы учесть очень большое различие размеров двух галактик при наблюдении двойной системы, астрономы вместо индивидуальных масс вычисляют средние значения отношений массы к светимости. Это позволяет компенсировать то обстоятельство, что более яркая галактика будет также и более массивной.

Например, для двойной галактики, состоящей из эллиптической галактики очень высокой светимости и небольшой эллиптической галактики, можно принять одинаковые значения отношений массы к светимости, но их движение не будет одинаковым. Меньшая галактика будет двигаться вокруг общего центра масс быстро, а большая — медленно.

Оценка средней массы будет примерно посередине и не будет характеризовать ни одну из галактик, но вычисленные для всей системы отношения массы к светимости позволят астроному определить индивидуальные массы каждой из галактик.

На практике это следует проделать для многих пар эллиптических галактик — для учета разных углов наклона и форм орбит.

Результаты исследования пар галактик разных типов удивительны. Вместо того, чтобы получить отношения массы к светимости от 1 до 10 (это диапазон значений для отдельных галактик, исследованных при помощи упомянутых выше методов), астрономы получили гораздо большие величины. Типичное значение для пар эллиптических галактик около 75, а пары спиральных галактик попадают в интервал от 20 до 40.

Эти значения поставили получивших их людей в тупик и настолько отличались от ожидаемых, что были предприняты значительные усилия, чтобы установить, каким образом результаты могли исказиться. Может быть, в чем-то предположения были неверными? Возможно, галактики в парах по какой-то причине эволюционного характера существенно массивнее (для своей светимости), чем уединенные галактики.

Или, быть может, статистический подход оказался в чем-то порочен? Из-за этих сомнений астрономы старались относиться к результатам, полученным по двойным галактикам, с осторожностью. Этого не следовало делать, а надо было перенести свои подозрения на более традиционные методы.

Как будет видно из следующих разделов, имеющиеся данные говорят о том, что двойные галактики дают лучшие результаты, чем мы думали.

Галактики обычно существуют в группах: они объединяются. Некоторые, вроде Млечного Пути, принадлежат к небольшим организациям наподобие Местной группы, в то время как другие являются членами огромных скоплений, содержащих тысячи галактик.

Во всех случаях это обстоятельство дает нам в руки еще один метод определения масс галактик. В скоплении каждая галактика движется в соответствии с силой притяжения со стороны других объектов.

Насколько быстро они в среднем движутся, зависит от среднего расстояния между ними и от их масс. Ситуация аналогична ситуации с дисперсией скоростей звезд в галактике, но теперь мы рассматриваем движение отдельных галактик в скоплении.

Если предположить, что скопления галактик устойчивы, то есть не охлопываются и не разлетаются, то движение отдельных членов и расстояния между ними должны дать оценку их масс.

Проблема с этим методом в том. что он тоже, как казалось. давал неправильный ответ. Когда в начале 60-х годов таким образом впервые были определены отношения массы к светимости, результаты оказались поразительными. Вместо значений около 1 — 10 были получены величины, равные сотням и даже тысячам.

Как же этот метод может быть неправильным? Предложенные многочисленные гипотезы включали возможность расширения скоплений, их сжатия, возможность, что они состоят из аномально массивных галактик, что в скоплениях много двойных галактик (что ведет к большим значениям измеренных скоростей) или что между галактиками в скоплениях много межгалактического вещества — достаточно, чтобы затмить гравитационное поле самих галактик. Сейчас мы с большим доверием смотрим на результаты, полученные по скоплениям, чем сначала. Нет сомнения, что все перечисленные факторы играют некоторую роль, но главное объяснение совершенно иное. Галактики все время скрывали от нас ужасную тайну: они полны загадочным «темным веществом«.

Читайте также:  Спектральный анализ в астрономии - все о космосе

Знание приходит к нам разными путями, но самый волнующий известен под названием «прорыв». Он происходит после того. как ученые на некоторое время как бы «застревают» и понимают, что чего-то не хватает: какой-то важный фрагмент знания на пороге, но ускользает и остается не найденным.

Исследование масс галактик прошло через подобную фазу, когда большинство астрономов чувствовало, что что-то в этой области науки не так, что какой-то важный факт ускользнул. Результаты измерений масс различными способами не согласовывались, и особенно острой была проблема для скоплений галактик.

Эта область науки определенно нуждалась в прорыве.

Первым признаком надвигающегося прорыва было недавнее исследование нейтрального водорода в M31. Когда был обнаружен и измерен газ на очень большом расстоянии от ядра, кривая вращения отказалась загнуться вниз и стать кеплеровской.

Далеко за тем местом, где согласно оптическим данным был достигнут загиб кривой, новые результаты для нейтрального водорода свидетельствовали о том, что скорость остается почти постоянной.

Это возможно, только если большие массы находятся в далеких областях какого-то невидимого гало вокруг M31 далеко за пределами видимых частей галактики. Были приняты во внимание все возможные типы объектов, которые могли объяснить эту массу.

Предполагалось, что это могут быть очень тусклые красные звезды или газ, ионизованный таким образом, что его нельзя наблюдать как нейтральный водород. Но эти простые гипотезы, так же как и другие, включавшие все известные объекты, были опровергнуты разного рода точными наблюдениями. Масса не могла быть ничем простым.

https://www.youtube.com/watch?v=rjlFbQPi2Yo

Тем временем появились другие данные, свидетельствовавшие о распространенности подобных массивных гало из невидимого вещества у галактик.

Более изощренные теоретические модели требовали наличия очень массивных гало для сохранения устойчивости наблюдаемой плоской части спиральных галактик.

Утверждалось, что плоский компонент галактики разрушится, если не будет удерживаться преобладающим тяготением окружающей массы.

При наблюдении других галактик помимо M31. Включая нашу собственную, стали обнаруживать, что кажущийся загиб кривой вращения был во многих случаях просто небольшой флуктуацией. К 80-м годам создалось впечатление, что нет галактик, масса которых заключена в видимом диске.

Теперь обнаружено несколько галактик, демонстрирующих во внешних частях кеплеровскую кривую, но в большинстве случаев это не так.

Большая часть оптических и радиокривых, по-видимому, сохраняет постоянную скорость вплоть до самой далекой доступной наблюдениям точки — даже при использовании для регистрации наиболее слабого излучения самого мощного современного оборудования.

Редко большая часть вещества в галактиках располагается в пределах видимых изображений. Наоборот, основная часть массы галактики расположена за теми пределами, где, как нам кажется, она кончается.

Если у галактик действительно есть темные гало. то обсуждавшиеся выше противоречия можно понять.

Метод кривой вращения дает лишь массу внутри пределов, ограниченных самой внешней из точек, где проводились измерения, а метод дисперсии скоростей говорит нам только об отношении массы к светимости в центре, делая необходимой экстраполяцию на внешние области с использованием распределения яркости для определения полной массы.

Ни один из этих методов не может обнаружить массивные невидимые гало. Но они обнаруживаются методом двойных галактик, так как галактики обращаются одна вокруг другой по орбитам, которые расположены в основном или полностью вне массивных гало отдельных членов. Аналогично метод скоплений тоже должен быть индикатором общей массы галактик.

В новом ходе развития событий прискорбно то, что если новые большие измеренные значения масс правильны, то при современных астрономических исследованиях большая часть Вселенной не наблюдается.

Большая часть вещества в космосе заключена в какой-то неизвестной форме в массивных гало галактик и то, что мы наблюдаем как галактики, — всего лишь вершины очень больших айсбергов.

Грандиозные спиральные галактики являются лишь скелетами огромных таинственных призраков, природа которых все еще остается неизвестной.

Для объяснения невидимого вещества в гало галактик было предложено много типов объектов. Когда физики впервые предположили, что у крошечной частицы под названием нейтрино может быть небольшая масса (до этого считалось, что масса покоя частицы равна нулю), кто-то тут же сказал, что гало могут состоять из нейтрино.

При появлении сообщения об открытии физиками монополя (отдельного изолированного магнитного полюса) с ничтожно малой массой, кто-то сразу предположил, что гало могут состоять из монополей.

При появлении других возможностей всегда, казалось, была надежда объяснить состав гало галактик, К сожалению, сейчас похоже, что нейтрино вообще не имеет массы, а единственный обнаруженный монополь мог быть ошибкой эксперимента, так что, вероятно, ни один из этих объектов не решит нашу проблему.

Мы остались с весьма небольшим списком невероятных объектов, ни один из которых, похоже, нам не подходит. В этом списке есть все объекты, которые только можно придумать, имеющие массу и при этом невидимые в галактиках. Например, планеты вроде Земли, не сопровождаемые светящейся звездой, будут иметь массу и излучать при этом слишком мало света, чтобы быть обнаруженными.

Подойдут также и более мелкие объекты — каменные глыбы или мелкие камешки. Проблема с подобными объектами в том, что никто не может придумать способ их производства в достаточном количестве. Можно довольно уверенно утверждать, что планета не может образоваться, если поблизости нет звезды, и то же верно для каменных глыб.

Единственные достойные рассмотрения объекты — это черные дыры, массивные и ничего не излучающие, которые каким-то образом могут образовываться во внешних частях протогалактик. Но что бы это ни было — черные дыры, каменные глыбы или экзотические субатомные частицы — возможность того, что большая часть Вселенной от нас скрыта, вызывает озабоченность. Мы живем в обширном и подавляюще темном космическом облаке, лишь кое-где освещенном свечами

Источник: https://www.vseocosmose.ru/?p=319

Остается все меньше секретов относительно природы гало Млечного Пути

Звездное гало представляет собой основную часть сферической подсистемы любой галактики, которое невозможно увидеть с помощью оптических приборов.

Такая сферическая часть гравитационно-связанной системы включает звёзды и звёздные скопления, межзвёздную пыль и газ, а также тёмную материю. Звездное гало простирается за видимую часть галактики.

Эта компонента всегда привлекала ученных и следователей физики космоса.

Известно, что звездное гало нашей Галактики выходит за ее пределы на 5—10 тысяч световых лет и имеет множество загадок относительно своего строения. Яркими примерами таких загадок является наличие гало темной материи и отсутствие полных знаний о поперечной скорости движения внегалактических объектов.

На исследования космоса тратятся колоссальные суммы из бюджетов стран и огромные вливания частных инвестиций. Пожалуй, тема познания вселенной представляется наиболее перспективной и быстроразвивающейся областью научных исследований.

В недавнем времени группа исследователей космоса во главе с Марией Бергеманн анализировала малое число звезд, находящихся в гало нашей Галактики.

Исследования ученых показали, что химическое строение вещества, из которого состоят эти газовые шары подобно соединениям, находящимся в диске нашей Галактики. Такое открытие свидетельствует о едином происхождении анализируемых звезд с диском Галактики.

Стоит отметить, ранее ученные предполагали, что изучаемые звезды возникли в результате столкновений карликовых галактик.

По предположениям астрономов перемещение звезд в область гало было вызвано колебаниями диска Млечного Пути, обусловленными приливными взаимодействиями нашей Галактики и движущихся вблизи галактик-спутников. В нашей Галактике иметься обширный перечень гравитационно-связанных с ним галактик входящих в Местную группу.

Объединенными силами ученных разных стран было исследовано четырнадцать звезд. Они входят в структуру двух отличающихся друг от друга структурных компонентов гало Млечного пути. Научные исследования астрономов возглавляла упомянутая ранее Бергеманн Мария из Германского института астрономии имени Макса Планка, находящегося в Германии.

В фокусе исследований находился Треугольник-Андромеды и объект А13. Примечательно, что исследуемые структуры находятся на противоположных концах диска Галактики, в удалении, составляющем приблизительно около 14000 световых лет от плоскости диска.

Полностью опровергнуть теорию образования исследуемых звезд вызванного влиянием карликовых галактик удалось на базе European Southern Observatory. Напомним, ранее считалось, что анализируемые звездные скопления возникли в результате вхождения карликовых галактик-спутников в нашу Галактику.

По данным проведенных исследований спектров высокого разрешения, был определен химический состав вещества, из которого состоят звезды. И однозначно подтверждена единая их природа со звездами галактического диска Млечного пути.

Провести такие исследования позволили мощные телескопы и слаженная работа команды. Межнациональная команда исследователей определила химическое строение исследуемых звезд, которое показывает близость и единую природу с химическими веществами звезд диска Галактики.

Группа исследователей теоретически обосновала химическую однородность влиянием осиляций и волн в диске. Такие колебания и волны происходят по причине взаимодействия нашей Галактики с движущимися рядом галактиками и поведением гало темной материи.

Согласно публикациям ученых часть звездных структур диска была отброшена за пределы диска, а именно в гало, в результате возникших колебаний.

Источник: http://mirkosmosa.ru/news/ostaetsya-vse-menshe-sekretov-otnositelno-prirody-galo-mlechnogo-puti

Ссылка на основную публикацию