Специальная теория относительности – все о космосе

Теория относительности Эйнштейна

В 1905 году Альберт Эйнштейн сделал два заявления: что законы физики одинаковы для всех инерциальных (т.е. двигающихся с постоянной скоростью относительно друг друга) систем, и скорость света в вакууме не зависит от скорости движения наблюдателей.

Эти принципы легли в основу специальной теории относительности (СТО), которая перевернула представления ученых о физике в целом. Эйнштейн потратил целых 10 лет, чтобы включить в данную теорию такой немаловажный компонент, как ускорение.

В 1915 году ему это, наконец, удалось, и он представил миру общую теорию относительности (ОТО), в которой утверждалось, что массивные тела провоцируют искривление пространства-времени, что и является по сути причиной возникновения гравитации.
Исаак Ньютон заявлял, что сила тяготения, возникающая между двумя телами, зависит от их массы и расстояния, на котором они друг от друга находятся.

Центр Земли притягивает человека к себе, а центр массы человека, в свою очередь, притягивает к себе Землю. Однако наша планета, будучи значительно более массивной, чем любой ее житель, едва ли ощущает его тяготение, в то время как человек стоит на Земле именно благодаря ее притяжению. Казалось бы, все логично.

Однако, Ньютон даже не пытался ответить на вопрос, как появляется гравитация, именно поэтому его теория заведомо содержала в себе ошибку. Альберт Эйнштейн пошел дальше. Приняв во внимание озвученные выше принципы СТО и доказав, что скорость света также неизменна и вне вакуума, не зависимо от скорости наблюдателей, он сделал вывод, потрясший абсолютно всех.

Эйнштейн провозгласил, что пространство и время следует объединить в один континуум, который получил название пространство-время. Ученый утверждал, что события, произошедшие в одно и тоже время для одного наблюдателя, могут произойти в разное время для другого наблюдателя.

Работая над ОТО, Эйнштейн осознал, что массивные тела провоцируют искривление пространства-времени. Представить это довольно легко: вообразите резиновую мембрану, в центр которой положили массивное тело.

Мембрана прогнется под весом тела, образуя «яму», верно? А если мы пустим по краю «ямы» маленький шарик, он покатится по спирали вниз, постепенно приближаясь к нашему массивному телу.

Таким же образом работает и гравитация.

Хотя современное оборудование не способно ни увидеть, ни измерить пространство-время, ученые уже обнаружили несколько явлений, которые подтверждают правильность этой теории. Остановимся на них более подробно.

Гравитационное линзирование

Свет вокруг массивных тел, таких как черные дыры, изгибается, подобно тому, как преломляется луч света, проходящий через линзу.

Благодаря этому явлению астрономам удается изучать звезды и галактики, находящиеся за массивными телами.
Крест Эйнштейна — один из ярких примеров гравитационного линзирования. В его центре находится объект-линза — галактика, располагающаяся на расстоянии 400 млн световых лет от Земли.

Другие четыре объекта представляют собой изображения квазара, который на самом деле находится за галактикой и удален от нашей планеты на целых 8 млрд световых лет. Еще один интересный пример: мертвая звезда, которую удалось обнаружить при помощи телескопа «Кеплер».

Этот белый карлик находится в двойной звездной системе вместе с красным карликом, который больше его по размерам, но меньше по массе. Когда белый карлик проходит перед своим соседом, его гравитационное поле искажает свет, исходящий от красного карлика, и делает его ярче.

Изменения в орбите Меркурия

Из-за искривления пространства-времени вокруг нашего массивного Солнца орбита Меркурия постепенно смещается. Через несколько миллиардов лет орбита этого небесного тела может измениться настолько, что в этом далеком будущем возможно его столкновение с Землей.

Искривление пространства-времени Землей

Эйнштейн предсказывал, что любое массивное вращающееся тело, как, например, наша планета, закручивает и искривляет пространство-время вокруг себя. Чтобы проверить это предсказание, в 2004 году НАСА запустила на орбиту Земли зонд «Gravity Probe B» (GP-B).

Ориентация высокоточных гироскопов, расположенных на борту GP-B со временем действительно изменилась, причем именно настолько, насколько следовало, исходя из расчетов Эйнштейна. «Представьте, что Земля погружена в мед, — объясняет происходящее ведущий исследователь миссии «Gravity Probe B» Френсис Эверитт.

– Когда планета вращается, мед закручивается вокруг нее. Тоже самое происходит и с пространством-временем».

Гравитационное красное смещение

Гравитационным красным смещением называют изменение частоты света, испущенного неким источником, по мере его удаления от массивных тел. Представьте машину скорой помощи, которая едет с включенной сиреной.

Когда машина приближается к наблюдателю, длина звуковых волн уменьшается, а когда скорая помощь начинает удаляться, звуковые волны, напротив, удлиняются. Это явление называется эффект Доплера. Тоже самое происходит и с волнами света.

 В 1959 году два физика, Роберт Паунд и Глен Ребка, провели следующий эксперимент: ученые испускали гамма-лучи вертикально в башне Гарвардского университета и обнаружили, что в таких условиях их частота меньше, чем обычно, а причиной тому – искривления, вызванные гравитацией.

Ещё по теме:

Источник: http://light-science.ru/fizika/teoriya-otnositelnosti.html

Теория относительности

Теория относительности стала результатом обобщения и синтеза классической механики Ньютона и электродинамики Максвелла, между которыми с середины XIX в. возникли серьезные противоречия.

Так, в механике господствовал классический принцип относительности Галилея, утверждавший равноправность всех инерциаль-ных систем отсчета, а в электродинамике — концепция эфира, или ненаблюдаемой среды, заполняющей мировое пространство и являющейся абсолютной системой координат.

Иными словами, в электродинамике выделялась одна система координат, имевшая предпочтение перед всеми другими системами.

Ряд ученых попытались решить данное противоречие. Среди них был нидерландский физик X. Лоренц, который вывел математические уравнения, называемые сегодня преобразованиями Лоренца, для вычисления реальных сокращений движущихся тел и промежутков времени между событиями, происходящими на этих телах, в зависимости от скорости движения.

А в 1905 г. в журнале «Анналы физики» появилась статья неизвестного тогда еще А. Эйнштейна «К электродинамике движущихся тел». В ней и были сформулированы основы специальной теории относительности.

Специальная теория относительности.Около десяти лет размышлял Эйнштейн над проблемой влияния скорости движения тел на электромагнитные явления. В результате он пришел к выводу о невозможности существования ньютоновского абсолютного пространства и времени, так как это противоречит принципу относительности Галилея.

Таким образом, Эйнштейн смог увидеть, что за рассуждениями Галилея скрывается принципиально иное представление о пространстве и времени. Сам Эйнштейн считал, что принцип относительности является квинтэссенцией классической механики, и поэтому должен быть сохранен.

От концепции абсолютного пространства и времени, как не имеющих реального физического содержания, следовало отказаться.

Специальная теория относительности (СТО) базируется на двух постулатах. Первый постулат СТО — расширенный принцип относительности. Он уравнивал между собой не только инерциальные

системы, движущиеся равномерно и прямолинейно друг относительно друга, но и распространил действие принципа на законы электродинамики.

Классический принцип относительности Галилея очень прост. Он всего лишь заявляет, что между покоем и движением, если оно прямолинейно и равномерно, нет никакой принципиальной разницы. Разница лишь в точке зрения.

Для путешественника, плывущего на корабле, книга, лежащая у него в каюте на столе, покоится, но для человека на берегу эта книга плывет вместе с кораблем. В данном примере бессмысленно спрашивать, движется или покоится книга. Такой спор был бы пустой тратой времени.

Наблюдателям нужно лишь согласовать свои позиции и признать, что книга покоится относительно корабля и движется относительно берега вместе с кораблем.

Таким образом, слово «относительность» в названии принципа Галилея не скрывает в себе ничего особенного.

Оно не имеет никакого иного смысла, кроме того, который мы вкладываем в утверждение о том, что движение или покой — всегда движение или покой относительно чего-то, что служит нам системой отсчета.

Это, конечно, не означает, что между покоем и равномерным движением нет никакой разницы. Но понятия покоя и движения приобретают смысл лишь тогда, когда указана точка отсчета.

Эйнштейн развил классический принцип относительности и пришел к выводу, что этот принцип является всеобщим и действует не только в механике, но и в электродинамике.

Второй постулат СТО Эйнштейн позаимствовал из электродинамики — это принцип постоянства скорости света, которая в вакууме примерно равна 300 000 км/с.

Второй постулат говорит о постоянстве скорости света во всех инерциальных системах отсчета.

Он связан с принципом относительности, в соответствии с которым если и существует максимальная скорость, то она должна быть одинаковой во всех инерциальных системах отсчета.

Но почему так важна эта скорость, что суждение о ней приравнивается к принципу относительности? Дело в том, что скорость света — самая большая из всех скоростей в природе, предельная скорость физических взаимодействий, одна из немногих фундаментальных физических констант нашего мира.

Движение света принципиально отличается от движения всех других тел, скорость которых меньше скорости света. Скорости этих тел всегда складываются с другими скоростями.

В этом смысле скорости относительны, их величина зависит от точки зрения (как в приведенном выше примере).

Скорость света не складывается с другими скоростями, она абсолютна, всегда одна и та же, и, говоря о ней, нам не нужно указывать систему отсчета.

Скорость света — это верхний предел для скорости перемещения любых тел в природе, для скорости распространения любых волн и сигналов. Она максимальна — это абсолютный рекорд скорости.

Она является предельной скоростью любых физических взаимодействий, да и вообще всех мыслимых взаимодействий в мире. Если бы это было не так, нарушился бы фундаментальный закон причинности, утверждающий, что причина всегда предшествует следствию.

Тогда разрушилась бы логическая связь событий во Вселенной, в мире воцарился абсолютный хаос и случайность.

Разумеется, все сказанное нами о скорости света, противоречит тому, что мы видим в окружающем нас мире. Более того, одновременное действие этих двух постулатов кажется невозможным. Чтобы решить данный парадокс, Эйнштейн обращается к анализу проблемы одновременности, которая и составляет суть теории относительности.

Классическая физика решала эту проблему очень просто в рамках концепции абсолютного времени, в соответствии с которой любые события во всех точках Вселенной совершались в рамках одной системы отсчета (абсолютного времени). Поэтому одновременность событий считалась реально существующим фактом.

Чтобы доказать существование одновременности, нужно иметь в двух точках пространства, в которых находятся интересующие нас объекты, одинаково устроенные, синхронно идущие часы. Синхронизировать эти часы можно, воспользовавшись световыми сигналами, которые будут направляться из одной точки в другую, а потом возвращаться обратно.

Если часы при этом будут показывать одинаковое время, значит, события в данных точках протекают одновременно. Если бы свет распространялся мгновенно, проблемы бы не существовало. Но так как свет обладает конечной скоростью, то наши сигналы в разных точках покажут разные результаты. Таким образом, события, одновременные для одного наблюдателя, окажутся неодновременными для другого.

Следовательно, понятие одновременности всегда относительно.

Из нового понимания одновременности вытекают важнейшие выводы специальной теории относительности, которые известны под названием релятивистских эффектов.

Относительными становятся не только скорости и траектории тел, как в классической механике, но и пространственно-временные характеристики тел, традиционно считавшиеся неизменными, — линейные размеры, масса и время протекания процессов. Оказывается, эти свойства зависят от скорости движения тел.

Правда, изменения линейных размеров, массы и времени протекания процессов становятся заметными, если измерять их из другой системы, движущейся относительно первой системы с иной скоростью. При этом скорость движения наблюдаемой системы должна быть очень большой, сравнимой со скоро-

стью света. Таким образом, релятивистские эффекты — это изменения пространственно-временных характеристик тел, заметные на больших скоростях, сравнимых со скоростью света. Их три:

1) сокращение линейных размеров тела в направлении его движения. Чем ближе скорость космического корабля, пролетающего мимо неподвижного наблюдателя, к скорости света, тем меньше будут его размеры для наблюдателя. Если бы корабль смог двигаться со скоростью света, то его наблюдаемая длина оказалась бы равной нулю, что невозможно;

2) увеличение массы быстродвижущихся тел. Масса движущегося тела с точки зрения неподвижного наблюдателя оказывается больше массы покоя того же тела. Чем ближе скорость тела к скорости света, тем больше возрастает его масса. Если бы тело смогло двигаться со скоростью света, то его масса возросла бы до бесконечности, что невозможно.

Поэтому никакое тело с массой, отличной от нуля, нельзя разогнать до скорости света, так как это потребовало бы бесконечной энергии. В связи с этим появилась самая известная формула теории относительности, связывающая массу и энергию.

Эйнштейну удалось доказать, что масса тела есть мера содержащейся в нем энергии: Е = тс2;

3) замедление времени в быстродвижущихся телах. Так, в быстро летящем космическом корабле время течет медленнее, чем для неподвижного наблюдателя. Эффект замедления времени на космическом корабле сказался бы не только на часах, но на всех процессах, протекающих в этом корабле, в том числе и на биологических ритмах его экипажа.

Чтобы проиллюстрировать эту ситуацию был предложен так называемый парадокс близнецов. Если бы из двух близнецов один остался на Земле, а другой улетел к звездам, то космонавт с точки зрения земного наблюдателя старился бы медленнее, чем его брат-близнец. Поэтому после возвращения домой космонавт обнаружил бы, что брат значительно старше его.

Интересно, что чем дальше совершается полет и чем ближе скорость корабля к скорости света, тем большей будет разница в возрасте между близнецами.

Она может измеряться даже сотнями и тысячами лет, в результате чего экипаж корабля сразу перенесется в близкое или более отдаленное будущее, минуя промежуточное время, поскольку ракета вместе с экипажем выпала из хода развития на Земле.

Таким образом, специальная теория относительности утверждает, что пространство и время нельзя рассматривать изолированно друг от друга. На основании этих выводов в 1907 г. немецкий математик Г.

Минковский высказал предположение, что три пространственных и одна временная размерность любых материальных тел тесно связаны между собой.

Все события во Вселенной происходят в едином четырехмерном пространстве-времени.

Обшая теория относительности. В рамках общей теории относительности, которая создавалась в течение десяти лет, с 1906 по 1916 г., А. Эйнштейн обратился к проблеме тяготения, давно привлекавшей к себе внимание ученых.

Поэтому общую теорию относительности часто называют теорией тяготения. В ней были раскрыты новые стороны зависимости пространственно-временных отношений от материальных процессов.

Общая теория относительности основывается уже не на двух, а на трех постулатах.

Первый постулат общей теории относительности — расширенный принцип относительности, который утверждает инвариантность законов природы в любых системах отсчета, как инерциальных, так и неинерциальных, движущихся с ускорением или замедлением. Он говорит о том, что нельзя приписывать абсолютный характер не только скорости, но и ускорению, которое имеет конкретный смысл только по отношению к фактору, его определяющему.

Второй постулат — принцип постоянства скорости света — остается неизменным.

Третий постулат — принцип эквивалентности инертной и гравитационной масс. Этот факт был известен еще в классической механике. Теоретический анализ, который был сделан ученым, позволил сделать вывод, что физика не знает способа отличить эффект гравитации от эффекта ускорения.

Иначе говоря, кинематические эффекты, возникающие под действием гравитационных сил, эквивалентны эффектам, возникающим под действием ускорения. Так, если ракета взлетает с ускорением 2g, то экипаж ракеты будет чувствовать себя так, как будто он находится в удвоенном поле тяжести Земли.

Важнейшим выводом общей теории относительности стала идея, что изменение геометрических (пространственных) и временных характеристик тел происходит не только при движении с большими скоростями, как это было доказано специальной теорией относительности, но и в гравитационных полях.

Сделанный вывод неразрывно связывал общую теорию относительности с геометрией, но общепризнанная геометрия Евклида для этого не годилась. Эйнштейн использовал геометрию Б. Римана, которая верна для поверхности сферы, и сделал вывод о кривизне пространства-времени.

Как можно представить себе искривление пространства, о котором говорит общая теория относительности? Представим себе очень тонкий лист резины и будем считать, что это модель пространства.

Расположим на этом листе большие и маленькие шарики — модели звезд и планет. Шарик будет прогибать лист резины тем больше, чем больше его масса.

Это наглядно демонстрирует зависимость кривизны пространства-времени от массы тела, подтверждает правоту Римана.

Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях.

Даже тяготение Солнца, достаточно небольшой по космическим меркам звезды, влияет на темп протекания времени, замедляя его вблизи себя.

Поэтому, если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет в таком случае больше времени, чем тогда, когда на пути этого сигнала, отправленного на такое же расстояние, Солнца не будет.

Задержка сигнала при его прохождении вблизи Солнца составляет около 0,0002 с. Такие эксперименты проводились, начиная с 1966 г., в качестве отражателя использовались как поверхности планет (Меркурия, Венеры), так и оборудование межпланетных станций.

Одно из самых фантастических предсказаний общей теории относительности — полная остановка времени в очень сильном поле тяготения. Замедление времени тем больше, чем сильнее тяготение.

Гравитационное замедление времени, мерой и свидетельством которого служит красное смещение, очень значительно вблизи нейтронных звезд, а у гравитационного радиуса черной дыры оно столь велико, что время там, с точки зрения внешнего наблюдателя, просто замирает.

Существование черных дыр было предсказано общей теорией относительности. Если бы наше светило вдруг сжалось и превратилось в шар с радиусом в 3 км или меньше (радиус Солнца равен 700 000 км), оно превратилось бы в черную дыру.

Из-за такого сжатия сила тяготения на поверхности, откуда исходит свет, возрастет настолько, что гравитационное красное смещение окажется действительно бесконечным. Солнце просто станет невидимым, ни один фотон не вылетит за его пределы.

С нашим Солнцем такого не случится, а вот звезды, превосходящие Солнце по массе в 3 раза, в конце своей эволюции превращаются в такие объекты.

Источник: https://megaobuchalka.ru/1/14489.html

Теория относительности

Был этот мир глубокой тьмой окутан. Да будет свет! И вот явился Ньютон.

Эпиграмма XVIII в.

Но сатана недолго ждал реванша. Пришел Эйнштейн – и стало все, как раньше.

Эпиграмма XX в.

Постулат (аксиома) – фундаментальное утверждение, лежащее в основе теории и принимаемое без доказательств.

Первый постулат: все законы физики, описывающие любые физические явления, должны во всех инерциальных системах отсчета иметь одинаковый вид.

Этот же постулат можно сформулировать иначе: в любых инерциальных системах отсчета все физические явления при одинаковых начальных условиях протекают одинаково.

Второй постулат: во всех инерциальных системах отсчета скорость света в вакууме одинакова и не зависит от скорости движения как источника, так и приемника света. Эта скорость является предельной скоростью всех процессов и движений, сопровождаемых переносом энергии.

Закон взаимосвязи массы и энергии

Релятивистская механика – раздел механики, изучающий законы движения тел со скоростями, близкими к скорости света.

Любое тело, благодаря факту своего существования, обладает энергией, которая пропорциональна массе покоя.

Что такое теория относительности (видео)

Следствия теории относительности

Относительность одновременности. Одновременность двух событий относительна. Если события, происшедшие в разных точках, одновременны в одной инерциальной системе отсчета, то они могут быть не одновременными в других инерциальных системах отсчета.

Сокращение длины. Длина тела, измеренная в системе отсчета K', в которой оно покоится, больше длины в системе отсчета K, относительно которой K' движется со скоростью v вдоль оси Ох:

Замедление времени. Промежуток времени, измеренный часами, неподвижными в инерциальной системе отсчета K', меньше промежутка времени, измеренного в инерциальной системе отсчета K, относительно которой K' движется со скоростью v:

материал из книги Стивена Хокинга и Леонарда Млодинова “Кратчайшая история времени”

Относительность

Фундаментальный постулат Эйнштейна, именуемый принципом относительности, гласит, что все законы физики должны быть одинаковыми для всех свободно движущихся наблюдателей независимо от их скорости.

Если скорость света постоянная величина, то любой свободно движущийся наблюдатель должен фиксировать одно и то же значение независимо от скорости, с которой он приближается к источнику света или удаляется от него.

Требование, чтобы все наблюдатели сошлись в оценке скорости света, вынуждает изменить концепцию времени. Согласно теории относительности наблюдатель, едущий на поезде, и тот, что стоит на платформе, разойдутся в оценке расстояния, пройденного светом.

А поскольку скорость есть расстояние, деленное на время, единственный способ для наблюдателей прийти к согласию относительно скорости света – это разойтись также и в оценке времени.

Другими словами, теория относительности положила конец идее абсолютного времени! Оказалось, что каждый наблюдатель должен иметь свою собственную меру времени и что идентичные часы у разных наблюдателей не обязательно будут показывать одно и то же время.

Говоря, что пространство имеет три измерения, мы подразумеваем, что положение точки в нем можно передать с помощью трех чисел – координат. Если мы введем в наше описание время, то получим четырехмерное пространство-время.

Другое известное следствие теории относительности – эквивалентность массы и энергии, выраженная знаменитым уравнением Эйнштейна Е = mс2 (где Е– энергия, m – масса тела, с – скорость света). Ввиду эквивалентности энергии и массы кинетическая энергия, которой материальный объект обладает в силу своего движения, увеличивает его массу. Иными словами, объект становится труднее разгонять.

Этот эффект существенен только для тел, которые перемещаются со скоростью, близкой к скорости света.

Например, при скорости, равной 10% от скорости света, масса тела будет всего на 0,5% больше, чем в состоянии покоя, а вот при скорости, составляющей 90% от скорости света, масса уже более чем вдвое превысит нормальную.

По мере приближения к скорости света масса тела увеличивается все быстрее, так что для его ускорения требуется все больше энергии.

Согласно теории относительности объект никогда не сможет достичь скорости света, поскольку в данном случае его масса стала бы бесконечной, а в силу эквивалентности массы и энергии для этого потребовалась бы бесконечная энергия. Вот почему теория относительности навсегда обрекает любое обычное тело двигаться со скоростью, меньшей скорости света. Только свет или другие волны, не имеющие собственной массы, способны двигаться со скоростью света.

Искривленное пространство

Общая теория относительности Эйнштейна основана на революционном предположении, что гравитация не обычная сила, а следствие того, что пространство-время не является плоским, как принято было думать раньше.

В общей теории относительности пространство-время изогнуто или искривлено помещенными в него массой и энергией. Тела, подобные Земле, движутся по искривленным орбитам не под действием силы, именуемой гравитацией.

Так как геодезическая линия – кратчайшая линия между двумя аэропортами, штурманы ведут самолеты именно по таким маршрутам. Например, вы могли бы, следуя показаниям компаса, пролететь 5966 километров от Нью-Йорка до Мадрида почти строго на восток вдоль географической параллели.

Но вам придется покрыть всего 5802 километра, если вы полетите по большому кругу, сперва на северо-восток, а затем постепенно поворачивая к востоку и далее к юго-востоку. Вид этих двух маршрутов на карте, где земная поверхность искажена (представлена плоской), обманчив.

Двигаясь «прямо» на восток от одной точки к другой по поверхности земного шара, вы в действительности перемещаетесь не по прямой линии, точнее сказать, не по самой короткой, геодезической линии.

Если траекторию космического корабля, который движется в космосе по прямой линии, спроецировать на двумерную поверхность Земли, окажется, что она искривлена.

Согласно общей теории относительности гравитационные поля должны искривлять свет.

Например, теория предсказывает, что вблизи Солнца лучи света должны слегка изгибаться в его сторону под воздействием массы светила.

Значит, свет далекой звезды, случись ему пройти рядом с Солнцем, отклонится на небольшой угол, из-за чего наблюдатель на Земле увидит звезду не совсем там, где она в действительности располагается.

Напомним, что согласно основному постулату специальной теории относительности все физические законы одинаковы для всех свободно двигающихся наблюдателей, независимо от их скорости. Грубо говоря, принцип эквивалентности распространяет это правило и на тех наблюдателей, которые движутся не свободно, а под действием гравитационного поля.

В достаточно малых областях пространства невозможно судить о том, пребываете ли вы в состоянии покоя в гравитационном поле или движетесь с постоянным ускорением в пустом пространстве.

Представьте себе, что вы находитесь в лифте посреди пустого пространства. Нет никакой гравитации, никакого «верха» и «низа». Вы плывете свободно. Затем лифт начинает двигаться с постоянным ускорением. Вы внезапно ощущаете вес.

То есть вас прижимает к одной из стенок лифта, которая теперь воспринимается как пол. Если вы возьмете яблоко и отпустите его, оно упадет на пол.

Фактически теперь, когда вы движетесь с ускорением, внутри лифта все будет происходить в точности так же, как если бы подъемник вообще не двигался, а покоился бы в однородном гравитационном поле.

Эйнштейн понял, что, подобно тому как, находясь в вагоне поезда, вы не можете сказать, стоит он или равномерно движется, так и, пребывая внутри лифта, вы не в состоянии определить, перемещается ли он с постоянным ускорением или находится в однородном гравитационном поле. Результатом этого понимания стал принцип эквивалентности.

Принцип эквивалентности и приведенный пример его проявления будут справедливы лишь в том случае, если инертная масса (входящая во второй закон Ньютона, который определяет, какое ускорение придает телу приложенная к нему сила) и гравитационная масса (входящая в закон тяготения Ньютона, который определяет величину гравитационного притяжения) суть одно и то же.

Использование Эйнштейном эквивалентности инертной и гравитационной масс для вывода принципа эквивалентности и, в конечном счете, всей общей теории относительности – это беспрецедентный в истории человеческой мысли пример упорного и последовательного развития логических заключений.

Замедление времени

Еще одно предсказание общей теории относительности состоит в том, что около массивных тел, таких как Земля, должен замедляться ход времени.

Теперь, познакомившись с принципом эквивалентности, мы можем проследить ход рассуждений Эйнштейна, выполнив другой мысленный эксперимент, который показывает, почему гравитация воздействует на время. Представьте себе ракету, летящую в космосе.

Для удобства будем считать, что ее корпус настолько велик, что свету требуется целая секунда, чтобы пройти вдоль него сверху донизу.

И наконец, предположим, что в ракете находятся два наблюдателя: один – наверху, у потолка, другой – внизу, на полу, и оба они снабжены одинаковыми часами, ведущими отсчет секунд.

Допустим, что верхний наблюдатель, дождавшись отсчета своих часов, немедленно посылает нижнему световой сигнал. При следующем отсчете он шлет второй сигнал.

По нашим условиям понадобится одна секунда, чтобы каждый сигнал достиг нижнего наблюдателя.

Поскольку верхний наблюдатель посылает два световых сигнала с интервалом в одну секунду, то и нижний наблюдатель зарегистрирует их с таким же интервалом.

Что изменится, если в этом эксперименте, вместо того чтобы свободно плыть в космосе, ракета будет стоять на Земле, испытывая действие гравитации? Согласно теории Ньютона гравитация никак не повлияет на положение дел: если наблюдатель наверху передаст сигналы с промежутком в секунду, то наблюдатель внизу получит их через тот же интервал. Но принцип эквивалентности предсказывает иное развитие событий. Какое именно, мы сможем понять, если в соответствии с принципом эквивалентности мысленно заменим действие гравитации постоянным ускорением. Это один из примеров того, как Эйнштейн использовал принцип эквивалентности при создании своей новой теории гравитации.

Итак, предположим, что наша ракета ускоряется. (Будем считать, что она ускоряется медленно, так что ее скорость не приближается к скорости света.

) Поскольку корпус ракеты движется вверх, первому сигналу понадобится пройти меньшее расстояние, чем прежде (до начала ускорения), и он прибудет к нижнему наблюдателю раньше чем через секунду.

Если бы ракета двигалась с постоянной скоростью, то и второй сигнал прибыл бы ровно настолько же раньше, так что интервал между двумя сигналами остался бы равным одной секунде.

Но в момент отправки второго сигнала благодаря ускорению ракета движется быстрее, чем в момент отправки первого, так что второй сигнал пройдет меньшее расстояние, чем первый, и затратит еще меньше времени. Наблюдатель внизу, сверившись со своими часами, зафиксирует, что интервал между сигналами меньше одной секунды, и не согласится с верхним наблюдателем, который утверждает, что посылал сигналы точно через секунду.

В случае с ускоряющейся ракетой этот эффект, вероятно, не должен особенно удивлять. В конце концов, мы только что его объяснили! Но вспомните: принцип эквивалентности говорит, что то же самое имеет место, когда ракета покоится в гравитационном поле.

Следовательно, да-же если ракета не ускоряется, а, например, стоит на стартовом столе на поверхности Земли, сигналы, посланные верхним наблюдателем с интервалом в секунду (согласно его часам), будут приходить к нижнему наблюдателю с меньшим интервалом (по его часам).

Вот это действительно удивительно!

Гравитация изменяет течение времени.

Подобно тому как специальная теория относительности говорит нам, что время идет по-разному для наблюдателей, движущихся друг относительно друга, общая теория относительности объявляет, что ход времени различен для наблюдателей, находящихся в разных гравитационных полях.

Согласно общей теории относительности нижний наблюдатель регистрирует более короткий интервал между сигналами, потому что у поверхности Земли время течет медленнее, поскольку здесь сильнее гравитация. Чем сильнее гравитационное поле, тем больше этот эффект.

Наши биологические часы также реагируют на изменения хода времени. Если один из близнецов живет на вершине горы, а другой – у моря, первый будет стареть быстрее второго.

В данном случае различие в возрастах будет ничтожным, но оно существенно увеличится, коль скоро один из близнецов отправится в долгое путешествие на космическом корабле, который разгоняется до скорости, близкой к световой.

Когда странник возвратится, он будет намного моложе брата, оставшегося на Земле. Этот случай известен как парадокс близнецов, но парадоксом он является только для тех, кто держится за идею абсолютного времени.

В теории относительности нет никакого уникального абсолютного времени – для каждого индивидуума имеется своя собственная мера времени, которая зависит от того, где он находится и как движется.

C появлением сверхточных навигационных систем, получающих сигналы от спутников, разность хода часов на различных высотах приобрела практическое значение. Если бы аппаратура игнорировала предсказания общей теории относительности, ошибка в определении местоположения могла бы достигать нескольких километров!

Появление общей теории относительности в корне изменило ситуацию. Пространство и время обрели статус динамических сущностей.

Когда перемещаются тела или действуют силы, они вызывают искривление пространства и времени, а структура пространства-времени, в свою очередь, сказывается на движении тел и действии сил.

Пространство и время не только влияют на все, что случается во Вселенной, но и сами от всего этого зависят.

Время возле черной дыры

Представим себе бесстрашного астронавта, который остается на поверхности коллапсирующей звезды во время катастрофического сжатия. В некоторый момент по его часам, скажем в 11:00, звезда сожмется до критического радиуса, за которым гравитационное поле усиливается настолько, что из него невозможно вырваться.

Теперь предположим, что по инструкции астронавт должен каждую секунду по своим часам посылать сигнал космическому кораблю, который находится на орбите на некотором фиксированном расстоянии от центра звезды. Он начинает передавать сигналы в 10:59:58, то есть за две секунды до 11:00.

Что зарегистрирует экипаж на борту космического судна?

Ранее, проделав мысленный эксперимент с передачей световых сигналов внутри ракеты, мы убедились, что гравитация замедляет время и чем она сильнее, тем значительнее эффект.

Астронавт на поверхности звезды находится в более сильном гравитационном поле, чем его коллеги на орбите, поэтому одна секунда по его часам продлится дольше секунды по часам корабля.

Поскольку астронавт вместе с поверхностью движется к центру звезды, действующее на него поле становится все сильнее и сильнее, так что интервалы между его сигналами, принятыми на борту космического корабля, постоянно удлиняются.

Это растяжение времени будет очень незначительным до 10:59:59, так что для астронавтов на орбите интервал между сигналами, переданными в 10:59:58 и в 10:59:59, очень ненамного превысит секунду. Но сигнала, отправленного в 11:00, на корабле уже не дождутся.

Все, что произойдет на поверхности звезды между 10:59:59 и 11:00 по часам астронавта, растянется по часам космического корабля на бесконечный период времени.

С приближением к 11:00 интервалы между прибытием на орбиту последовательных гребней и впадин испущенных звездой световых волн станут все длиннее; то же случится и с промежутками времени между сигналами астронавта.

Поскольку частота излучения определяется числом гребней (или впадин), приходящих за секунду, на космическом корабле будет регистрироваться все более и более низкая частота излучения звезды. Свет звезды станет все больше краснеть и одновременно меркнуть.

В конце концов звезда настолько потускнеет, что сделается невидимой для наблюдателей на космическом корабле; все, что останется, – черная дыра в пространстве. Однако действие тяготения звезды на космический корабль сохранится, и он продолжит обращение по орбите.

Источник: http://msk.edu.ua/ivk/Fizika/Konspekt/otnositelnost.php

Сверим часы?: теория относительности

    Теория относительности — физическая теория, разглядывающая пространственно-временные закономерности, честные для любых физических процессов. самая общая теория пространства-времени именуется неспециализированной теорией относительности (ОТО), либо теорией тяготения.

    В личной (либо особой) теории относительности (СТО) изучаются свойства пространства-времени, честные с той точностью, с какой возможно пренебрегать действием тяготения.

    (Физический энциклопедический словарь, 1995) масса и Время Тело сжимается на протяжении оси перемещения по мере приближения к скорости света Ядерный распад количество и новых Атомная масса атомов появившейся энергии перемещения эквивалентны массе начального атома

В конце XIX века тяготения и законы движения, открытые Ньютоном, везде употреблялись для расчетов и обнаружили все больше экспериментальных подтверждений. Ничто, казалось, не предсказывало переворот в данной области.

Но дело уже давно не исчерпывалось лишь механикой: как результат экспериментальной деятельности многих ученых в области магнетизма и электричества показались уравнения Максвелла.

Вот тут-то и начались неприятности с законами физики.

Уравнения Максвелла сводят воедино электричество, свет и магнетизм. Из них направляться, что скорость электромагнитных волн, среди них и световых, не зависит от перемещения излучателя и равна в вакууме приблизительно 300 тыс. км/с. Это никак не согласуется с механикой Галилея и Ньютона. Предположим, воздушный шар летит относительно Земли со скоростью 100 тыс. км/с.

Выстрелим вперед из светового ружья световой пулей, скорость которой 300 тыс. км/с. Тогда, по формулам Галилея, скорости направляться , соответственно, пуля полетит относительно Земли со скоростью уже 400 тыс. км/с. Никакого постоянства скорости света не получается!

Было приложено много упрочнений, дабы найти изменение скорости света при перемещении излучателя, но ни один из хитроумных опытов не удался. Кроме того самый правильный из них, опыт Майкельсона — Морли, дал отрицательный итог. Значит, что-то неверно в уравнениях Максвелла?

Но так как они замечательно обрисовывают все электрические и магнитные явления. И тогда Анри Пуанкаре высказал идея, что дело все-таки не в уравнениях, а в принципе относительности: все физические законы, не только механические, как у Ньютона, но и электрические, должны быть однообразны в совокупностях, движущихся относительно друг друга равномерно и прямолинейно.

В 1904 году датчанин Хендрик Антон Лоренц специально для уравнений Максвелла приобрел новые формулы пересчета координат движущейся совокупности довольно неподвижной и напротив. Но это помогло только частично: получалось, что для законов Ньютона необходимо применять одни преобразования, а для уравнений Максвелла другие. Вопрос оставался открытым.

Особая теория относительности

Преобразования, предложенные Лоренцем, содержит два серьёзных следствия. Оказалось, что при переходе от одной совокупности к второй необходимо в обязательном порядке подвергать преобразованиям не только координаты, но и время.

А помимо этого, размер движущегося тела, вычисленный по формулам Лоренца, изменялся — он становился меньше на протяжении направления перемещения! Исходя из этого скорости, превышающие скорость света, теряли каждый физический суть, поскольку наряду с этим тела сжимались до нулевых размеров.

Многие физики, среди них и сам Лоренц, вычисляли эти выводы легко математическим казусом. До тех пор пока за дело не взялся Эйнштейн.

Отчего же теория относительности носит имя Эйнштейна, в случае если принцип относительности сформулировал Пуанкаре, постоянство скорости света вывел Максвелл, а правила преобразования координат придумал Лоренц? В первую очередь скажем, что все, о чем мы говорили до сих пор, касается лишь так называемой «особой теории относительности» (СТО). Не смотря на бытующую точку зрения, вклад Эйнштейна в эту теорию отнюдь не исчерпывается несложным обобщением результатов.

Во-первых, ему удалось взять все уравнения, основываясь всего на двух постулатах — принципе постоянства и принципе относительности скорости света.

А во-вторых, он осознал, какую поправку направляться внести в закон Ньютона, дабы тот не выпадал из новой картины мира и не изменялся при преобразованиях Лоренца.

Для этого было нужно критически отнестись к двум до того незыблемым базам классической механики — к абсолютности времени и постоянству массы тела.

Ничего безотносительного

В Ньютоновой механике звездное время было молчаливо отождествлено с полным временем, а в теории Эйнштейна каждой совокупности отсчета соответствует собственный собственное, «местное» время и нет таких часов, каковые отсчитывали бы время для всей Вселенной. Но выводов об относительности времени выяснилось не хватает, дабы устранить разногласия между классической механикой и электродинамикой. Эта задача была решена, в то время, когда пал второй хороший бастион — постоянство массы.

Эйнштейн ввел трансформации в фундаментальный закон Ньютона о пропорциональности силы ускорению и взял, что масса неограниченно возрастает при приближении к скорости света.

Вправду, поскольку из постулатов СТО направляться, что скорость, громадная скорости света, не имеет физического смысла, соответственно, никакая сила не имеет возможности больше увеличивать скорость тела, уже летящего со скоростью света, другими словами в этих условиях сила уже не приводит к! Чем больше скорость тела, тем тяжелее его ускорить.

А потому, что коэффициент пропорциональности и имеется масса (либо инерция), то из этого следует, что масса тела возрастает при повышении скорости.

Превосходно, что данный вывод был сделан еще в ту пору, в то время, когда не наблюдалось явных несоответствий и противоречий между законами Ньютона и результатами опытов.

В простых условиях изменение массы незначительно, а найти его экспериментально возможно только при больших скоростях, родных к скорости света.

Кроме того для спутника, летящего со скоростью 8 км/с, поправка к массе составит не более одной двухмиллиардной.

Но уже в 1906 году выводы СТО нашли собственный подтверждение при изучении электронов, движущихся с громадными скоростями: в опытах Кауфмана было зафиксировано изменение массы этих частиц. А на современных ускорителях разогнать частицы просто не окажется, в случае если совершить расчеты хорошим методом не учитывая особой теории относительности.

Но дальше оказалось, что непостоянство массы разрешает сделать еще более фундаментальное заключение. При повышении скорости растет масса, растет энергия перемещения Не одно ли это да и то же? Математические выкладки подтвердили предположение об энергии и эквивалентности массы, и в 1907 году Эйнштейн взял собственную известную формулу E = mc2. Это и имеется основной вывод СТО.

энергия и Масса являются одно да и то же и преобразуются приятель в приятеля! И в случае если какое-нибудь тело (к примеру, атом урана) внезапно распадается на два, каковые в сумме имеют меньшую массу, то остаток массы переходит в энергию перемещения. Сам Эйнштейн предполагал, что подметить изменение массы возможно будет только при огромных выделениях энергии, потому, что коэффициент c2 в взятой им формуле весьма и весьма велик.

Но и он, возможно, не ожидал, что эти теоретические рассуждения заведут человечество так на большом растоянии. Создание ядерной бомбы подтвердило справедливость особой теории относительности, лишь уж через чур дорогой ценой.

Казалось бы, нет оснований сомневаться в правильности теории.

Но тут в самый раз отыскать в памяти слова Эйнштейна: «Опыт ни при каких обстоятельствах не сообщит теории «да», но говорит в лучшем случае «возможно», большей же частью — легко «нет».

Последний, самый правильный опыт по проверке одного из постулатов СТО, постоянства скорости света, был совершён совсем сравнительно не так давно, в 2001 году, в Университете города Констанц (Германия).

Стоячую лазерную волну помещали в «коробочку» из сверхчистого сапфира, охлажденную до температуры жидкого гелия, и в течение шести месяцев смотрели за трансформацией частоты света. Если бы скорость света зависела от скорости перемещения лаборатории, то и частота данной волны изменялась бы при перемещении Почвы по орбите. Но никаких трансформаций подметить пока не удалось.

Неспециализированная теория относительности

Разместив в 1905 году собственную известную работу «К электродинамике движущихся тел», посвященную СТО, Эйнштейн двинулся дальше. Он был уверен, что СТО — это лишь часть пути.

Принцип относительности должен быть честен в произвольных совокупностях отсчета, а не только в тех, каковые движутся равномерно и прямолинейно.

Это убеждение Эйнштейна было не просто предположением, в его основе лежал экспериментальный факт, соблюдение принципа эквивалентности.

Поясним, что это такое. В законах перемещения фигурирует так называемая «инертная» масса, которая показывает, как тело тяжело ускорить, а в законах тяготения — «тяжелая» масса, определяющая силу притяжения между телами.

Принцип эквивалентности предполагает, что эти массы в точности равны друг другу, но лишь опыт может подтвердить, так ли это в действительности.

Из принципа эквивалентности направляться, что все тела должны двигаться в поле тяжести с однообразным ускорением.

Еще Галилей контролировал это событие, бросая, в соответствии с легенде, различные тела с Пизанской башни. Тогда точность измерений составила 1%, Ньютон довел ее до 0,1%, а, по последним данным 1995 года, мы можем быть уверены, что принцип эквивалентности выполняется с точностью 5 х 10−13.

Забрав за базу принцип относительности и принцип эквивалентности, через десятилетие напряженной работы Эйнштейн создал собственную теорию тяготения, либо неспециализированную теорию относительности (ОТО), которая и сейчас постоянно восхищает теоретиков собственной математической красотой. время и Пространство в теории тяготения Эйнштейна были подвержены необычным видоизменениям. Гравитационное поле, которое создают около себя тела, владеющие массой, искривляет окружающее пространство.

Представьте себе шарик, лежащий на батуте. Чем тяжелее шарик, тем больше прогнется сетка батута. И время, перевоплощённое в четвертое измерение, не остается в стороне: чем больше гравитационное поле, тем медленнее течет время.

Первое подтвердившееся предсказание ОТО сделал сам Эйнштейн еще в 1915 году. Оно касалось перемещения Меркурия. Перигелий данной планеты (другими словами точка ее большого приближения к Солнцу) неспешно меняет собственный положение. За сто лет наблюдений с Почвы смещение составило 43,1 угловой секунды.

Лишь неспециализированная теория относительности смогла дать потрясающе правильное предсказание данной величины — 43 угловых секунды. Следующим шагом стали наблюдения за отклонением световых лучей в гравитационном поле Солнца на протяжении полного солнечного затмения 1919 года. С того времени совершено много таких опытов, и все они подтверждают ОТО — при том, что точность всегда растёт.

К примеру, в первой половине 80-ых годов XX века она составила 0,3%, а в 1995 году — уже менее 0,1%.

С возникновением ядерных часов дело дошло и до самого времени.

Достаточно поместить одни часы на вершине горы, другие у ее подножия — и возможно уловить отличие хода времени! А с возникновением спутниковых совокупностей глобального позиционирования теория относительности перешла наконец из разряда ученых развлечений в сугубо практическую область. Спутники GPS, к примеру, летают на высоте порядка 20 тыс. км со скоростью около четырех километров/с.

Так как они находятся довольно далеко от Почвы, часы на них, в соответствии с ОТО, торопятся приблизительно на 45 микросекунд (мкс) в сутки, но потому, что они летят с громадной скоростью, то благодаря СТО те же часы каждый день отстают приблизительно на 7 мкс. В случае если эти поправки не учесть, то вся совокупность станет никуда не годной в течение нескольких суток! Перед отправкой на орбиту ядерные часы на спутниках корректируют так, дабы они шли медленнее где-то на 38 мкс в сутки.

Да и то, что по окончании таковой корректировки мой простенький приемник GPS изо дня в сутки верно показывает мои координаты на необъятной земной поверхности, без шуток усиливает мое доверие к теории относительности.

Все эти удачи лишь раззадоривают охотников за относительностью.

Сейчас в каждом уважающем себя университете имеется лаборатория по поиску гравитационных волн, каковые, в соответствии с теории тяготения Эйнштейна, должны распространяться со скоростью света.

Отыскать их пока не удалось. Еще один камень преткновения — сообщение ОТО и квантовой механики. Обе они замечательно согласуются с опытом, но совсем не совместимы между собой.

Не правда ли, чем-то напоминает классическую механику и электромагнетизм финиша XIX века? Пожалуй, стоит ожидать изменений.

Статья размещена в издании «Популярная механика» (№10, август 2003).

Специальная теория относительности

Интересные записи на сайте:

Подобранные по важим запросам, статьи по теме:

  • Естьли жизнь набране?: теория струн

    Пример разомкнутой струны Пример замкнутой струны Пример замкнутой струны В теории суперструн принимается, что струна имеется свободный физический…

  • Сверхпроводимость на службе у общей теории относительности

    Число опытов, для объяснения которых нужно завлекать неспециализированную теорию относительности (ОТО) Эйнштейна, возможно пересчитать по пальцам. Как…

  • Вселенная своими руками: теория инфлатонов

    Возможно, мы на данный момент ломаем голову над значением фундаментальных физических постоянных и их соотношением как раз вследствие того что…

  • Контракт еще на сто лет

    Д. А. Тайц, к.ф.-м.н. Так, то возражение, что космология не есть наукой, потому, что не имеет под собой наблюдательной базы, более не существует….

  • Теория промышленного штандорта а. вебера

    Главный труд социолога и немецкого экономиста А. Вебера «О размещении индустрии: чистая территория штандорта» был размещён в 1909 г. Ученый поставил…

  • Про закрученный свет

    На рисунке изображен умный кран, что, как утверждает разработчик, экономит расход воды. Эта водяная картина весьма похожа на световой закрученный луч, о…

Источник: http://sovzondconference.ru/sverim-chasy-teorija-otnositelnosti/

Ссылка на основную публикацию