Сверхкритическая жидкость – все о космосе

Cверхкритическая вода

Что бы загасить пламя, пожарные часто пользуются водой, а вот космонавты, находящиеся на борту МКС, экспериментируют с формой воды, которая имеет прямо противоположные свойства — она разжигает огонь. «Мы называем такую жидкость «сверхкритической водой», – говорит Майк Хикс из исследовательского центра Гленна в штате Огайо (Glenn Research Center in Ohio). – И её свойства достаточно интересны».

Вода становится сверхкритической, когда сжимается под давлением 217 атмосфер и нагревается выше 373 градусов Цельсия. Преодолев эту критическую точку, обычная  вода переходит в новое агрегатное состояние – становится фактически жидким газом.

«Когда сверхкритическая вода смешивается с органическим материалом, происходит химическая реакция окисления, – рассказывает Хикс. – Это одна из форм горения без пламени.

Удобно, если нужно избавиться от разного рода неприятных материалов, например, сточных вод.

Возможно, в будущем этот эксперимент пригодится городам, корпоративным фермам, кораблям в море и пилотируемым кораблям, где часто накапливаются жидкие отходы».

Когда жидкость сжимается выше критической точки, сверхкритическая вода рушит углеводородные связи. А затем они вступают в реакцию с кислородом.

Другими словами, соответствующая органическая субстанция воспламеняется. Иногда получается, что возникает даже видимое пламя, но это редкость.

Это форма горения хороша тем, что в итоге получаются лишь чистая вода и углекислый газ, но токсичные продукты, как правило, сгорают.

Почему же такие эксперименты проводятся именно на МКС? «Международная космическая станция – уникальная микрогравитационная лаборатория для изучения свойств сверхкритической воды», – объясняет Майкл Хикс.

Одна из проблем в этом эксперименте связана с солями. Когда вода достигает критической точки, соли, растворённые в ней, быстро выпадают в осадок.

Если это происходит в реакторе, его металлические компоненты подвергаются коррозии.

По словам Хикса, перед практической проверкой эксперимента необходимо выяснить, как именно следует бороться с солями. Ибо именно из-за них могут возникнуть определённые технологические трудности.

Решение этой проблемы является конечной целью эксперимента на МКС, проводимого совместными усилиями NASA и Национального центра космических исследований CNES, французского космического агентства.

Изучение сверхкритической воды без осложняющего воздействия силы тяжести поможет узнать, как соли ведут себя на фундаментальном уровне.

Возможно, удастся даже понять, как уберечь чувствительные компоненты конструкции от коррозии.

Эксперимент, в котором используется французское оборудование DECLIC, базируется на территории японского экспериментального модуля станции. Он начался в первую неделю июля 2013 года и будет продолжаться в течение 2014 года.

Всего планируется провести шесть тестовых запусков оборудования, каждый продолжительностью около 15 дней.

Стоит также добавить, что ВМС США уже начали использовать сверхкритические водные технологии для утилизации отходов на борту некоторых своих кораблей.

Источник: http://stella-sol.info/cverxkriticheskaya-voda/

По показаниям советского зонда «Вега-2» учёные вывели, что нижняя атмосфера Венеры — сверхкритическая жидкость

15 июня 1985 года спускаемый модуль советского космического аппарата «Вега-2» сел на поверхность Венеры в районе долины Русалки (7.14° ю. ш. 117.67° в. д.) и 56 минут передавал сигнал. Пройдя через атмосферу, он собрал единственный на сегодняшний день её полный температурный профиль.

Как и ожидалось, атмосфера оказалась очень плотной и тяжёлой. Атмосферное давление на поверхности составляет 92 бар, то есть примерно в 92 раза выше, чем на Земле, а температура — 464 °C. Плотность атмосферы у поверхности составляет примерно 6,5% от плотности жидкой воды.

На 96,5% она состоит из CO2, на 3,5% — из N2 (по объёму).

Плотность атмосферы Венеры настолько высока, что её движение даже могло заставить Венеру остановить вращение, а затем начать медленно вращаться в противоположную сторону (есть такая теория). Сейчас Венера медленно вращается в сторону, противоположную земному, и делает один оборот вокруг оси за 243,02 земных суток.

Неожиданным для учёных было то, что согласно показаниям «Веги-2» атмосфера Венеры оказалась довольно нестабильной на высоте менее 7 км — этот слой гораздо горячее, чем слой выше. Фактически, эти показания данных советского зонда до сих пор остаются необъяснимыми. Сейчас учёные предложили новое объяснение этим необычным показаниям сенсоров.

Они считают, что на самом деле нижние слои атмосферы представляют собой сверхкритическую жидкость.

Научную работу с анализом показаний сенсоров советского зонда опубликовала пара учёных — Себастьян Лебонуа (Sebastien Lebonnois) из лаборатории метеорологической динамики Университет Пьера и Марии Кюри (Франция) и Джералд Шуберт (Gerald Schubert) с кафедры земных, планетарных и космических наук Калифорнийского университета в Лос-Анджелесе (США).

Вертикальная структура атмосферы Венеры по результатам моделирования показана на диаграмме. Вертикальные профили показывают изменение температуры, плотности и стабильности атмосферы в зависимости от высоты и увеличения атмосферного давления. Показано также расположение облаков.

Информация здесь собрана в том числе по результатам десятилетий наблюдений другими орбитальными аппаратами (советские «Венера-15» и «Венера-16», американские «Пионер-Венера-1» и «Магеллан», европейский «Венера-экспресс», японский «Акацуки»), других зондов, воздушных шаров и земных телескопов.

Все собранные данные показывают, что на Венере, как и на Земле, есть тропосфера, которая простирается от поверхности до верхнего слоя облаков на высоте примерно 60-65 км, и в тропосфере температура уменьшается с высотой. Нижний слой облаков с серной кислотой заканчивается на высоте около 48 км.

Там температура и давление примерно соответствуют температуре и давлению на поверхности Земле. Сразу под облаками атмосфера относительно стабильна примерно до высоты 7 км, и вот самый нижний слой представляет загадку. В нём сосредоточено 37% массы всей атмосферы Венеры, именно там максимальное давление и температура.

Проникнуть туда и измерить атмосферные показатели исключительно сложно. Надёжно измерить температуру на низкой высоте удалось только советскому спускаемому аппарату «Вега-2» в 1985 году.
Измерения проводились двумя платиновыми проводами, один оголённый, а второй в керамической изоляции, с точностью ±0,5 K в диапазоне от 200 до 800 K.

Как уже было сказано, слишком резкое повышение температуры на высоте ниже 7 км учёные до сих пор не могли объяснить.

Авторы научной работы обращают внимание на то, что у нас нет точных сведений о химическом составе нижнего слоя. Они предполагают, что там наблюдается иная пропорция CO2 и N2. В частности, концентрация N2 у поверхности падает до нуля.

Точнее, в результате сверхвысокого давления у поверхности происходит разделение CO2 и N2. То есть более лёгкий N2 поднимается в верхние слои атмосферы. Следовательно, истинная концентрация N2 в атмосфере может быть на 15% меньше, чем считалось ранее.

Учёные делают такие выводы на основании результатов своих экспериментов со сверхкритическими жидкостями. Дело в том, что при высоком давлении и плотности исчезает различие между жидкой и газовой фазой вещества.

Соответственно, газовая смесь может частично разделиться на фракции, как это происходит в жидкости. Например, для CO2 критическая температура составляет 303,9 K, критическое давление — 72,8 атм, а критическая плотность — 0,468 г/см3.

Как видим, условия у поверхности Венеры вполне могут создать условия для перехода атмосферы в сверхкритическое состояние.

Авторы считают необходимым проведение дальнейших исследований атмосферы Венеры. Если нельзя отправить туда зонд, то можно попробовать воссоздать климатические условия в лаборатории НАСА.

Научная работа опубликована в журнале Nature Geoscience 26 июня 2017 года (doi:10.1038/ngeo2971, pdf).

  • Венера
  • атмосфера
  • азот
  • углекислый газ
  • сверхкритическая жидкость

Источник: https://habr.com/post/405137/

Сверхкритические жидкости в химии

Сверхкритические жидкости в химии (правильнее, сверхкритические флюиды) – четвертая форма агрегатного состояния вещества, в которую способны переходить многие органические и неорганические вещества при достижении определенной температуры и давления.

Впервые сверхкритическое состояние вещества обнаружил Каньяр де ла Тур в 1822, нагревая различные жидкости в наглухо закрытом металлическом шаре (шаровая форма была выбрана, чтобы сосуд мог выдержать максимально возможное давление). Внутрь шара, помимо жидкости, он помещал простейший датчик – небольшой камешек.

Потряхивая шар в процессе нагревания, Каньяр де ла Тур установил, что звук, издаваемый камешком при столкновении со стенкой шара, в определенный момент резко меняется – становится глухим и более слабым. Для каждой жидкости это происходило при строго определенной температуре, которую стали именовать точкой Каньяра де ла Тура.

Настоящий интерес к новому явлению возник 1869 после экспериментов Т.Эндрюса. Проводя опыты в толстостенных стеклянных трубках, он исследовал свойства CO2, легко сжижающегося при повышении давления.

В результате он установил, что при 31° С и 7,2 Мпа, мениск – граница, разделяющая жидкость и пространство, заполненное газом, исчезает и весь объем равномерно заполняется молочно-белой опалесцирующей жидкостью.

При дальнейшем повышении температуры она быстро становится прозрачной и подвижной, состоящей из постоянно перетекающих струй, напоминающих потоки теплого воздуха над нагретой поверхностью. Дальнейшее повышение температуры и давления не приводило к видимым изменениям.

Точку, в которой происходит такой переход, он назвал критической, а состояние вещества, находящегося выше этой точки – сверхкритическим.

Несмотря на то, что внешне оно напоминает жидкость, в применении к нему сейчас используется специальный термин – сверхкритический флюид (от английского слова fluid, то есть «способный течь»).

В современной литературе принято сокращенное обозначение сверхкритических флюидов – СКФ.

Критическая точка

При изменении температуры или давления происходят взаимные переходы: твердое тело – жидкость – газ, например, при нагревании твердое тело переходит в жидкое, при повышении температуры или при понижении давления жидкость превращается в газ. Все эти переходы, как правило, обратимы. В общем виде они представлены на рисунке:

Расположение линий, разграничивающих области газообразного, жидкого и твердого состояния, а также положение тройной точки, где сходятся эти три области, для каждого вещества свои.

Сверхкритическая область начинается в критической точке (обозначена звездочкой), которая характеризуется непременно двумя параметрами – температурой и давлением (так же, как точка кипения).

Понижение либо температуры, либо давления ниже критического выводит вещество из сверхкритического состояния.

Факт существования критической точки позволил понять, почему некоторые газы, например, водород, азот, кислород долгое время не удавалось получить в жидком виде с помощью повышенного давления, из-за чего их ранее называли перманентными газами (лат.permanentis – постоянный).

Из приведенного выше рисунка видно, что область существования жидкой фазы расположена слева от линии критической температуры. Таким образом, для сжижения какого либо газа необходимо его вначале охладить до температуры ниже критической.

Читайте также:  Эффект доплера - все о космосе

У таких газов как СО2 или Cl2 критическая температура выше комнатной (31° С и 144° С соответственно), поэтому их можно сжижать при комнатной температуре, только повышая давление.

У азота критическая температура много ниже комнатной: –239,9° С, поэтому, если сжимать азот, находящийся при нормальных условиях (исходная точка желтого цвета на приведенном ниже рисунке), то можно достичь в конечном итоге сверхкритической области, но жидкий азот при этом образоваться не может.

Необходимо вначале охладить азот ниже критической температуры (зеленая точка) и затем, повышая давление, достичь области, где возможно существование жидкости – красная точка (твердое состояние азота возможно только при очень высоких давлениях, поэтому соответствующая область на рисунке не показана):

Аналогичная ситуация для водорода, кислорода (критические температуры соответственно –118,4° С, –147° С), поэтому перед сжижением их вначале охлаждают до температуры ниже критической, и лишь затем повышают давление.

Сверхкритическое состояние

возможно для большинства жидких и газообразных веществ, нужно лишь, чтобы вещество не разлагалось при критической температуре. Вещества, для которых такое состояние наиболее легко достижимо (т.е. нужны сравнительно невысокие температура и давление), показаны на диаграмме:

В сравнении с указанными веществами критическая точка для воды достигается с большим трудом: tкр = 374,2° С и ркр = 21,4 МПа.

Начиная с середины 1880-х критическая точка признается всеми как важный физический параметр вещества, такой же, как точка плавления или кипения. Плотность СКФ исключительно низка, например, вода в форме СКФ имеет плотность в три раза ниже, чем при обычных условиях. Все СКФ имеют крайне низкую вязкость.

Сверхкритические флюиды представляют собой нечто среднее между жидкостью и газом. Они могут сжиматься как газы (обычные жидкости практически несжимаемы) и, в тоже время, способны растворять твердые вещества, что газам не свойственно.

Сверхкритический этанол (при температуре выше 234° С) очень легко растворяет некоторые неорганические соли (CoCl2, KBr, KI). Диоксид углерода, закись азота, этилен и некоторые другие газы в состоянии СКФ приобретают способность растворять многие органические вещества – камфару, стеариновую кислоту, парафин и нафталин.

Свойства сверхкритического СО2 как растворителя можно регулировать – при повышении давления его растворяющая способность резко увеличивается:

Опыты, поставленные для визуального наблюдения сверхкритического состояния, были опасны, поскольку не каждая стеклянная ампула способна выдержать давление в десятки МПа.

Позже для того, чтобы установить момент, когда вещество становится флюидом, вместо визуальных наблюдений в стеклянных трубках вернулись к методике, близкой к той, что использовал Каньяр де ла Тур.

С помощью специальной аппаратуры стали измерять скорость прохождения звука в изучаемой среде, в момент достижения критической точки скорость распространения звуковых волн резко падает.

Применение СКФ

К середине 1980-х справочники содержали сведения о критических параметрах сотен неорганических и органических веществ, но необычные свойства СКФ все еще не находили применения.

Сверхкритические флюиды стали широко использовать только в 1980-х, когда общий уровень развития индустрии позволил сделать установки для получения СКФ широко доступными. С этого момента началось интенсивное развитие сверхкритических технологий.

В первую очередь исследователи сосредоточили внимание на высокой растворяющей способности СКФ. На фоне традиционных методов использование сверхкритических флюидов оказалось очень эффективным. СКФ – это не только хорошие растворители, но и вещества с высоким коэффициентом диффузии, т.е.

они легко проникают в глубинные слои различных твердых веществ и материалов. Наиболее широко стали применять сверхкритический СО2, который оказался растворителем широкого круга органических соединений. Диоксид углерода стал лидером в мире сверхкритических технологий, поскольку обладает целым комплексом преимуществ.

Перевести его в сверхкритическое состояние достаточно легко (tкр – 31° С, ркр – 73,8 атм.), кроме того, он не токсичен, не горюч, не взрывоопасен и к тому же дешев и доступен. С точки зрения любого технолога он является идеальным компонентом любого процесса.

Особую привлекательность ему придает то, что он является составной частью атмосферного воздуха и, следовательно, не загрязняет окружающую среду. Сверхкритический СО2 можно считать экологически абсолютно чистым растворителем.

Фармацевтическая промышленность одна из первых обратилась к новой технологии, поскольку СКФ позволяют наиболее полно выделять биологически активные вещества из растительного сырья, сохраняя неизменным их состав.

Новая технология полностью соответствует современным санитарно-гигиеническим нормам производства лекарственных препаратов. Кроме того, исключается стадия отгонки экстрагирующего растворителя и последующей его очистки для повторных циклов.

В настоящее время организовано производство некоторых витаминов, стероидов и других препаратов по такой технологии.

Кофеин – препарат, используемый для улучшения деятельности сердечно-сосудистой системы, получают из кофейных зерен даже без предварительного их измельчения. Полнота извлечения достигается за счет высокой проникающей способности СКФ.

Зерна помещают в автоклав – емкость, выдерживающую повышенное давление, затем подают в него газообразный СО2, и далее создают необходимое давление (>73 атм.), в результате чего СО2 переходит в сверхкритическое состояние. Все содержимое перемешивают, после чего флюид вместе с растворенным кофеином сливают в открытую емкость.

Диоксид углерода, оказавшись в условиях атмосферного давления, превращается в газ и улетает в атмосферу, а экстрагированный кофеин остается в открытой емкости в чистом виде:

В производстве косметических и парфюмерных препаратов СКФ-технологии используютсядля извлечения эфирных масел, витаминов, фитонцидов из растительных и животных продуктов. В извлеченных веществах нет следов растворителя, а мягкий способ извлечения позволяет сохранить их биологическую активность.

В пищевой промышленности новая технология позволяет деликатно извлекать из растительного сырья различные вкусовые и ароматические компоненты, добавляемые в пищевую продукцию.

Радиохимия использует новую технологию для решения экологических задач. Многие радиоактивные элементы в сверхкритической среде легко образуют комплексы с добавленными органическими соединениями – лигандами.

Образующийся комплекс, в отличие от исходного соединения радиоактивного элемента, растворим во флюиде, и потому легко отделяется от основной массы вещества.

Таким способом можно извлекать остатки радиоактивных элементов из отработанных руд, а также проводить дезактивацию почвы, зараженной радиоактивными отходами.

Удаление загрязнений при использовании СК-растворителя особенно эффективно. Есть проекты установок для устранения загрязнений с одежды (сверхкритическая химчистка), а также для очистки различных электронных схем в процессе их производства.

Помимо упомянутых преимуществ новая технология в большинстве случаев оказывается дешевле, чем традиционная.

Основной недостаток сверхкритических растворителей состоит в том, что емкости, заполненные СКФ, работают в режиме периодического процесса: загрузка сырья в аппарат – выгрузка готовой продукции – загрузка свежей порции сырья. Не всегда можно повысить производительность установки, увеличивая объем аппаратов, поскольку создание больших емкостей, выдерживающих давление, близкое к 10 МПа, – трудная техническая задача.

Для некоторых процессов химической технологии удалось разработать непрерывные процессы – постоянная подача сырья и непрерывный вывод полученного продукта. Производительность повышается, т.к. что не нужно тратить время на загрузку и выгрузку. В этом случае объем аппаратов можно заметно уменьшить.

Газообразный водород хорошо растворяется в сверхкритическом CO2, что позволяет непрерывно гидрировать органические соединения в среде флюида. В реактор, содержащий катализатор гидрирования, непрерывно подают реагенты (органическое вещество и водород), а также флюид.

Продукты выводятся через специальный клапан, при этом флюид просто испаряется и его можно вновь направить в реактор. Описанным способом удается за две минуты прогидрировать почти килограмм исходного соединения, причем реактор с такой производительностью буквально умещается на ладони.

Изготовить столь небольшой реактор, выдерживающий высокие давления, намного проще, чем крупный аппарат.

Такой реактор испытан в процессах гидрирования циклогексена до циклогексана (применяумого как растворитель эфирных масел и некоторых каучуков), а также изофорона до триметилциклогексанона (используют в органическом синтезе):

В химии полимеров сверхкритический СО2 как среда для полимеризации используется редко. Большинство мономеров в нем растворимо, но в процессе полимеризации растущая молекула теряет растворимость задолго до того, как успевает заметно вырасти. Этот недостаток удалось превратить в преимущество.

Полимеры, полученные обычным путем, затем эффективно очищают от примесей, извлекая не прореагировавший мономер и инициатор полимеризации с помощью СКФ. Благодаря исключительно высоким диффузионным свойствам, флюид легко проникает в массу полимера.

Процесс технологичен – не нужны громадные количества органических растворителей, которые, кстати, трудно удаляются из полимерной массы.

Кроме того, полимеры легко набухают при пропитывании флюидом, поглощая его до 30 %. Резиновое кольцо после набухания увеличивает свою толщину почти вдвое:

При медленном снижении давления прежний размер восстанавливается. Если взять не эластичный материал, а твердый и после набухания резко сбросить давление, то СО2 быстро улетает, оставляя полимер в виде микропористого материала. Это, по существу, новая технология получения поропластов.

СК-флюид незаменим для введения в массу полимера красителей, стабилизаторов, а также различных модификаторов. Например, в полиарилат вводят комплексы меди, которые при последующем восстановлении образуют металлическую медь. В итоге из полимера и равномерно распределенного металла возникает композиция, обладающая повышенной износоустойчивостью.

Некоторые полимеры (полисилоксаны и фторированные полиуглеводороды) растворяются в СК-СО2 при температуре, близкой к 100 0С и давлении 300 атм. Этот факт позволяет использовать СКФ в качестве среды для полимеризации обычных мономеров.

К полимеризующемуся акрилату добавляют растворимые фторированные полиуглеводороды, при этом растущая молекула и фторированная «добавка» удерживают друг друга полярными взаимодействиями. Таким образом, фторированные группы добавленного полимера играют роль «поплавков», поддерживающих всю систему в растворе.

В результате растущая молекула полиакрилата не выпадает из раствора в осадок и успевает вырасти до значительных размеров:

В полимерной химии используется и ранее упомянутое свойство флюидов – изменять растворяющую способность при повышении давления (см. график растворения нафталина). Полимер помещают в среду флюида и, постепенно увеличивая давление, отбирают порции раствора. Таким образом удается достаточно тонко разделить полимер на составляющие его фракции, то есть рассортировать молекулы по величине.

Вещества, используемые как флюиды. Перспективы

Сейчас 90% всех СКФ – технологий ориентированы на сверхкритический СО2. Помимо диоксида углерода начинают постепенно входить в практику другие вещества. Сверхкритический ксенон (tкр – 16,6° С, ркр – 58 атм.

Читайте также:  Планетарий нашей столицы - все о космосе

) представляет собой абсолютно инертный растворитель, и потому химики используют его как реакционную среду для получения нестабильных соединений (чаще всего, металлоорганических), для которых СО2 является потенциальным реагентом.

Широкого применения этого флюида не ожидается, поскольку ксенон – дорогой газ.

Для извлечения животных жиров и растительных масел из природного сырья более подходит сверхкритический пропан (tкр – 96,8, ркр – 42 атм.), поскольку он лучше, чем СО2, растворяет указанные соединения.

Одно из самых распространенных и экологически безвредных веществ – вода, но перевести ее в сверхкритическое состояние достаточно трудно, поскольку параметры критической точки очень велики: tкр – 374° С, ркр – 220 атм.

Современные технологии позволяют создавать установки, отвечающие таким требованиям, но работать в этом диапазоне температур и давлений технически сложно. Сверхкритическая вода растворяет практически все органические соединения, которые не разлагаются при высоких температурах.

Такая вода, при добавлении в нее кислорода, становится мощной окислительной средой, превращающей за несколько минут любые органические соединения в Н2О и СО2.

В настоящее рассматривают возможность перерабатывать таким способом бытовые отходы, прежде всего пластиковую тару (сжигать такую тару нельзя, т.к. при этом возникают токсичные летучие вещества).

Михаил Левицкий

Источник: http://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/SVERHKRITICHESKIE_ZHIDKOSTI_V_HIMII.html

Луна и поверхность Земли образовались из сверхкритической жидкости

Столкновение Земли с гипотетической планетой Тейей вероятно образовало Луну совсем не так, как полагали раньше: мощнейший удар испарил большую часть твёрдых пород нашей планеты, резко раздув её в размерах, и именно из внешних слоев этого пара возник наш естественный спутник.Американские учёные разработали новую методику определения концентрации изотопов калия и на её основе создали экзотическую теорию образования Луны, ранее никогда не рассматривавшуюся научным сообществом. Соответствующая статья опубликована в журнале Nature.

C 1970-х годов принято считать, что Луна образовалась, когда 4,5 миллиарда лет назад гипотетическая планета размером с Марс (Тейя) ударила в прото-Землю. Однако последние 15 лет ряд данных плохо стыкуется с этой идеей. Почти любая модель такого столкновения показывает, что Луна не менее чем на 60 процентов должна образоваться из Тейи.

Но анализ состава лунного грунта — как советского, так и американского — указал на то, что там то же соотношение изотопов кислорода, что и на Земле. Известно также, что химический состав планет, образовавшихся в разных регионах Солнечной системы, должен различаться. Американские марсоходы фиксируют, что изотопный состав для Марса совсем не такой, как для Земли.

Общепринятая модель формирования Луны.

Чтобы объяснить это противоречие, в 2015 году была предложена новая модель, согласно которой столкновение тел было “лобовым” и настолько мощным, что основная часть обеих планет от нагрева испарилась.

Горные породы стали газом, однако его температура была так высока, что вместо силикатной атмосферы над ядром планеты возник сплошной покров силикатной сверхкритической жидкости. Так называют состояние вещества, когда температура и давление в нем выше критической точки.

Из-за этого ему одновременно присущи свойства как газа, так и жидкости. Например, сверхкритическая жидкость легко проникает сквозь препятствия как газ, но при этом растворяет твёрдые тела, как жидкость.

В такой среде материя Тейи и прото-Земли могла быстро смешаться и стать химически однородной за короткое время. У гипотезы было два основных недостатка. Во-первых, если это было так, её, на первый взгляд, было невозможно ни опровергнуть, ни убедительно доказать. Ведь состав Земли и Луны тогда был бы одинаковым.

Во-вторых, сценарий получался слишком экзотическим. Он требовал испарения основной части нашей планеты после удара и её увеличения в объёме в 500 раз. Диаметр планеты тогда мог достигать 100 000 километров (почти как у Сатурна).

Это примерно в восемь раз больше, чем сегодня и больше похоже на газовую планету-гиганта, чем на известную нам Землю.

Однако теперь учёные из США, создав более точный метод анализа для изотопов калия установили, что в лунных породах калия-41 чуть больше, чем в земных (на 4 десятитысячных доли). Единственный сценарий, который может корректно объяснить такое различие, — разная скорость конденсация калия-41 из облака горячего пара.

Внешние слои вздувшейся после удара прото-Земли оказались бы в десятках тысячах километров от её центра и начали охлаждаться раньше. По мере остывания более тяжелый калий-41 осаждался во внешних слоях интенсивнее, чем во внутренних.

Поскольку внешние слои позже стали Луной, а внутренние стали нынешней Землёй, на спутнике калия-41 естественным образом оказалось чуть больше, чем на нашей планете.Если бы этот процесс шёл в вакууме, он дал бы большую разницу по концентрации калия-41.

Поскольку различия всё же довольно малы, расчёты показывают, что конденсация калия-41 в веществе будущей Луны шло при давлении в 10 атмосфер. Это довольно большая величина, которая указывает на то, что гипотеза испарения прото-Земли после столкновения с Тейей, скорее всего, верна.

Как ни трудно было бы это себе представить сегодня, в районе формирования будущей Луны существовала сверхкритическая жидкость из испарившихся твёрдых пород нашей планеты. Со временем она постепенно кристаллизовывалась в породы современной Луны. А остальные “излишки” вещества осели обратно на нашу планету, образовав её внешние слои. Взято с https://life.ru

Источник: https://portaltele.com.ua/news/events/luna-i-poverhnost-zemli-obrazovalis-iz-sverhkriticheskoj-zhidkosti.html

Пять стихий: воздух

Бывают ли материалы, на 90 процентов состоящие из воздуха? И при этом твердые, тепло- и звукоизолирующие, проводящие электричество и вообще способные найти себе применение сразу в нескольких отраслях промышленности? Читайте в очередной статье из нашего цикла «Пять стихий», который N+1 делает совместно с НИТУ «МИСиС», об аэрогелях — наноматериале, заполненном воздухом.

Свойства аэрогелей

На фото ниже представлен один из самых распространенных аэрогелей — из диоксида кремния. Его еще называют «голубым дымом» за красивый опалово-голубоватый оттенок.

Внешне этот аэрогель выглядит как кусок льда, но на самом деле он удивительно легкий и твердый. И совершенно сухой. На ощупь похож на пенопласт, но никак не на желе или лед.

Если уронить кусочек такого «дыма» на твердую поверхность, то он запрыгает, как надувной мячик, а звук будет похож на звон стеклянной елочной игрушки.

NASA /JPLСуществуют и другие аэрогели самых разных расцветок, но такие же невесомые. Какими свойствами обладает этот материал? Вот наиболее характерные:

  • очень низкая плотность (до 160 грамм на кубический метр), то есть в шесть раз легче воздуха;
  • крайне низкая теплопроводность (до 0,016 ватт на метр на кельвин), в 10 раз ниже, чем у дерева;
  • низкая скорость распространения звука (до 70 метров в секунду);
  • чрезвычайно низкий коэффициент преломления света (до 1.0002);
  • электрическая проводимость может меняться в широких пределах в зависимости от используемого материала.
  • Большинство аэрогелей легко ломаются руками, несмотря на свою твердость. То есть они хрупкие, но твердые — некоторые выдерживают без разрушения вес, превышающий собственный в 4000 раз.

    Кирпич поддерживается эфемерным брусочком из диоксида кремния NASA /JPLВпрочем, уже созданы пластичные аэрогели, которые можно гнуть и по которым можно даже стучать молотком. Как раз такие материалы планируется использовать для утепления скафандров, создаваемых в рамках будущей марсианской экспедиции.

    И не только скафандров — производители одежды и туристического снаряжения уже сейчас активно экспериментируют с подобными материалами.

    У аэрогелей есть еще один уникальный параметр — отношение площади полной поверхности к весу: до 3200 квадратных метров на грамм.

    Это означает, что если представить площадь всей поверхности в виде единой плоскости, то одного грамма этого материала хватит, чтобы покрыть половину футбольного поля! Как такое может быть? Все дело в структуре этого удивительного материала.

    Оказывается, что аэрогель — это почти сплошная «дырка от бублика»: сверхтонкие твердые стеночки толщиной всего в несколько нанометров (одна миллионная миллиметра) образуют сложный трехмерный лабиринт из пор и слоев.

    Сами поры имеют размеры от десятков до сотен нанометров и в обычных земных условиях заполнены воздухом — он заполняет 90-99 процентов объема материала. А при случае эти супергубки отлично заполняются и чем-то еще. Например, нефтью, разлитой по поверхности моря из-за аварии танкера.

    Кроме того, такая огромная площадь при столь малом весе замечательно подходит для создания ионисторов — суперконденсаторов с емкостью в сотни и тысячи фарад (емкость обычного конденсатора обычно измеряется микрофарадами). Возможно, именно они заменят в ближайшем будущем классические аккумуляторы. И не забудем про катализаторы, ведь в них площадь поверхности также играет решающую роль — от нее зависит эффективность воздействия катализатора на химическую реакцию.

    Что такое гель

    Итак, в основе уникальных свойств аэрогелей в первую очередь лежит их пространственная структура с крошечными открытыми порами. Материал стенок, безусловно, также имеет значение. Например, от него в значительной мере зависят механические свойства, а также электропроводность конкретного аэрогеля.

    Но как на практике можно получить такие замысловатые полые «пузырики» с твердыми стенками? Ответ кроется в названии самого материала.  Именно гели являются исходным материалом для создания аэрогелей. Те самые гели, влажные и тяжелые, вроде холодца.

    Всем известный желатин, между прочим, также подходит для создания этого наноматериала.

    Кстати, а что такое гель? На ощупь мы все хорошо представляем себе эту субстанцию, но что она представляет собой на микроуровне? Оказывается, любой гель состоит из двух компонентов с разными физическими свойствами: твердой фазы в виде непрерывной пористой пространственной структуры, пронизывающей весь образец, и жидкой фазы, заполняющей поры. Причем характерный размер твердой фазы — как раз десятки нанометров, ведь твердая фаза в гелях — это обычно конгломераты наночастиц или длинных макромолекул.

    Типичный гель можно себе представить в виде поролоновой губки для мытья посуды, пропитанной жидкостью. Только поры в такой губке в сотни тысяч раз меньше, чем в той, что у нас на кухне.

    А что получится, если удалить всю жидкость из такой губки? Получится сухая губка с заполненными воздухом порами. Так ведь это и есть аэрогель! Выходит, что для получения этого материала достаточно просто высушить любой гель? К сожалению, нет.

    Читайте также:  Эволюция вселенной: от начала до наших времен - все о космосе

    Практика показывает, что при испарении жидкой фазы гель начинает быстро уменьшаться в объеме и, в конце концов, мы получим маленький плотный комочек сухого вещества, а не желаемый пористый наноматериал со сверхмалой плотностью.

    Но почему   поролоновая губка высыхает, не уменьшаясь в объеме, а ее гелевый аналог ведет себя совершенно по-другому? И как с этим бороться?

    Собственно говоря, коренным отличием нашей модели с губкой от реального геля являются размеры пор: у губки они исчисляются миллиметрами, а у гелей – десятками нанометров, то есть разница составляет примерно пять порядков.

    Теперь представим себе, как происходит испарение жидкости из пор: в какой-то момент жидкость перестает полностью их заполнять, и появляется граница между жидкостью и парами этой жидкости, смешанными с воздухом.

    Как известно, на границе жидкости всегда действуют силы поверхностного натяжения, которые приводят к взаимодействию поверхности жидкости и стенок сосуда (в нашем случае стенок пор). Если стенки хорошо смачиваются, то поверхность жидкости приобретает вогнутую форму и на стенки действует сила, тянущая их внутрь сосуда.

    Величина этой силы, приходящаяся на единицу длины стенки поры вдоль границы жидкости, не зависит от радиуса поры. Но при этом в геле стенки этих пор в тысячи раз тоньше, чем в нашей губке. Получается, что прилагаемая к стенкам удельная сила в геле и в губке одна и та же, а вот толщина этих стенок и, соответственно, их механическая прочность — совсем разные.

    Не удивительно, что поры губки выдерживают высыхание наполняющей их жидкости, а поры геля — нет. Отсюда и «скукоживание» геля при высыхании — поверхность жидкости в порах просто ломает хрупкие стенки одну за другой по мере испарения, и в результате мы получаем сухой слипшийся комок из изломанных стенок, а не ажурную конструкцию, свойственную аэрогелям.

    Как высушить гель

    Каким образом можно удалить жидкость из хрупких пор геля, не разрушив его структуру? Решение было найдено еще в 1931 году американским ученым Самуэлем Кистлером (Samuel Stephens Kistler). По некоторым сведениям, он поспорил со своим коллегой, что первым сможет провести эту деликатную операцию, и выиграл спор.

    Идея Кистлера состояла в том, чтобы избавиться от поверхности жидкости и связанных с ней сил натяжения, раз уж именно поверхность и является причиной всех бед. Представим себе, что мы имеем запаянную стеклянную колбу, которая наполовину заполнена жидкостью. Через прозрачные стенки мы будем видеть границу жидкости и газа над ней. Теперь начнем нагревать колбу.

    Жидкость внутри будет испаряться, что приведет к повышению количества и давления пара над ее поверхностью. А также, естественно, и температуры этого пара.

    Если продолжать нагревание достаточно долго, то в определенный момент давление и температура внутри колбы достигнут такого уровня, что плотность пара сравняется с плотностью жидкости и граница между ними просто исчезнет. А сам пар и жидкость потеряют знакомые нам характеристики (например, жидкость станет сжимаемой) и превратятся в одно неразделимое целое.

     Вместе с поверхностью раздела фаз исчезнут и силы поверхностного натяжения. Такие температура и давление, при которых пар перестает отличаться от жидкости, а жидкость от пара, в термодинамике называются критическими и изображаются в качестве критической точки на фазовой диаграмме:

    Для воды критическая температура и давление составляют 374 градуса Цельсия и 218 атмосфер соответственно.

    То есть, если мы повысим давление в камере с гелем на водной основе до 218 атмосфер и выше и затем поднимем температуру выше 374 градусов Цельсия, то какое-либо различие между паром и водой исчезнет — мы получим так называемую сверхкритическую жидкость.

    Внутри каждой поры геля окажется очень плотный пар или вода, что при таких условиях по сути одно и то же. Если теперь начать понижать давление до критического и ниже, сохраняя температуру выше критической, то этот плотный пар начнет постепенно выходить из геля без какой-либо конденсации.

    Затем можно начать понижать и температуру до тех пор, пока остатки пара не покинут гель и он не превратится в нужный нам сухой аэрогель, заполненный воздухом. Описанный процесс называется суперкритической сушкой и показан красной стрелкой.

    Так как, по этому сценарию, в процессе превращения жидкости в пар не возникает границы раздела жидкой и газообразной сред, то не возникает и сил поверхностного натяжения внутри пор и они остаются целыми в процессе сушки. Зеленая стрелка обозначает сценарий сушки, когда жидкость превращается в пар обычным порядком.

     В этом случае мы имеем одновременное существование двух фазовых состояний, границу раздела и, соответственно, разрушение структуры геля. Синяя стрелка показывает, что возможен и третий путь, который называется сублимационной сушкой. По этому сценарию жидкость внутри пор сначала переводится в твердое состояние путем заморозки, а затем, при пониженном давлении, твердая фаза превращается в газообразную, минуя жидкую (и связанные с ней проблемы с поверхностным натяжением). На практике такой вариант действительно позволяет получать некоторые виды аэрогелей.

    В реальной жизни прямое использование гелей на водной основе для изготовления аэрогелей очень неудобно из-за высоких критических температуры и давления воды.

    Поэтому до начала сушки обычно производится замещение первоначальной жидкой составляющей геля на более подходящую в смысле критической точки. Таким заместителем может выступать, например, метиловый спирт (критическая температура — 250 градусов Цельсия, критическое давление — 77 атмосфер).

    Именно спирты использовал Кистлер для получения аэрогелей со стенками из неорганических соединений. Для органики он рекомендовал сжиженный пропан в качестве жидкой составляющей геля при суперкритической сушке. Также находят применение ацетон и сжиженный углекислый газ.

    Вообще «рецептов» приготовления аэрогелей существует на настоящий день довольно много. В Интернете даже можно найти рекомендации по его изготовлению в домашних условиях.

    В России исследованием аэрогелей занимаются сразу несколько научных центров, в том числе и Центр композитных материалов при НИТУ «МИСиС».

    Научный сотрудник Центра, кандидат физико-математических наук Федор Сенатов дал следующий комментарий относительно технологических возможностей применения сверхкритического состояния вещества: «Интересной и полезной особенностью вещества в сверхкритическом состоянии (флюид) является то, что с помощью него можно не только формировать пористость в геле, но и модифицировать сам материал, а также удалять из него ненужные примеси. Например, можно растворить в сверхкритическом флюиде лекарственное вещество и обработать этим флюидом полимерный гель. Когда флюид проникнет в гель, то принесет с собой и лекарство, которое останется в полимере после снижения давления и ухода флюида. Таким образом, получится аэроэгель, который можно использовать в медицине для ультрафильтрации биологических жидкостей с одновременным лекарственным действием.

    Тем же способом можно удалять ненужные примеси из материала.

    Данный метод, получивший в литературе название сверхкритическая флюидная экстракция (СФЭ), достаточно давно используется как в лабораторных исследованиях, так и в промышленном производстве.

    Самым распространенным примером экстракции сверхкритическими флюидами является применение скСО2 для декофеинизации кофе. Более чем сто тысяч тонн декофеинизированного кофе производится в мире ежегодно с применением скСО2».

    Из чего делают аэрогели

    Что касается твердой составляющей аэрогелей, то используемые материалы можно разделить на несколько классов:

    Диоксид кремния (силикагель). Это наиболее известный материал, который знаком нам в виде гранул внутри бумажных пакетиков-осушителей и в кошачьих туалетах. Полученный из него аэрогель почти прозрачен, имеет голубоватый оттенок за счет релеевского рассеяния света на нанопорах, обладает чрезвычайно низкой теплопроводностью, хрупкий, но твердый.

    Карбон (углерод). Карбоновый аэрогель непрозрачен, характеризуется чрезвычайно высокой пористостью с показателем площади полной поверхности к весу  400–1000 квадратных метров на грамм. Проводит электричество, что делает его одним из наиболее популярных материалов для ионисторов с емкостью в тысячи фарад. Кроме того, такой аэрогель поглощает почти 100 процентов излучения в инфракрасном диапазоне, а это очень ценное качество для солнечной энергетики.

    Оксиды металлов. Соответствующие аэрогели широко используются для изготовления катализаторов. Обычно в их состав входит оксид алюминия с добавкой никеля.

    NASA использует алюминиевый аэрогель с добавкой гадолиния и тербия для регистрации космических частиц сверхвысоких энергий. Дело в том, что эти аэрогели флуоресцируют при попадании в них таких частиц, что позволяет их регистрировать.

    Причем мощность излучения зависит от энергии частицы. Окраска аэрогелей на основе оксида металла варьирует в широких пределах.

    Органические полимеры. Например, аэрогель из агар-агара, того самого, который добавляют во фруктовое желе. Другой органический материал — целлюлоза — используется для производства гибких аэрогелей.

    Халькогены. К этой группе относятся: сера, селен, теллур и т.д.

    Селенид кадмия. Аэрогель, изготовленный из этого материала, обладает полупроводниковыми свойствами.

    Более того, свойства аэрогелей можно дополнительно изменять с помощью введения различных модифицирующих добавок в состав твердой фазы.

    В настоящее время выделяют основные сегменты промышленности, в которых аэрогели нашли свое применение:

  • термоизоляция, шумоизоляция;
  • электроника;
  • химия;
  • медицина;
  • военные технологии;
  • энергетика;
  • сенсоры и инструменты;
  • космос;
  • потребительские товары;
  • биология;
  • фармацевтика;
  • охрана окружающей среды.
  • Себестоимость производства аэрогелей в последние годы снижается рекордными темпами, и уже сегодня любой желающий может купить относительно недорогие теплоизоляторы на основе гибкого аэрогеля, в том числе и в России. Ожидается, что объем рынка аэрогелей составит 2 миллиарда долларов к 2022 году. Широкое внедрение этого удивительного представителя наноматериалов — дело ближайшего будущего, так что не удивляйтесь, если через несколько лет вы приедете на переговоры в офис с прозрачными стенами из аэрогелевых стеклопакетов, и там вам предложат чай из воды, отфильтрованной в аэрогелевом фильтре, а звонить начальнику вы будете со смартфона, который питается от аэрогелевого суперконденсатора.

    Сергей Петров

    Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

    Источник: https://nplus1.ru/material/2016/12/02/aerogel-and-its-characteristics

    Ссылка на основную публикацию