Сверхновые звезды – все о космосе

Все о космосе

Сверхновые звезды - все о космосе

Самая высокая степень переменности наблюдается у новых к сверхновых звезд. Эти звезды иногда, в отличие от обычных переменных звезд, называют взрывными звездами.

Термин «новая» вошел в употребление потому, что наблюдатели обнаруживали звезду там, где ее рань­ше, казалось не было.

На самом деле, старые фотографии всегда показывают, что точно на месте появившейся яркой звезды раньше находилась слабая звездочка, так что речь должна идти не о возникновении звезды, которой раньше не было, а о сильной вспышке уже существую­щей звезды.

Явление обычно протекает так: звезда невысокой све­тимости (с М примерно равной +6 —+8т), ранее ничем особенным себя не проявлявшая, вдруг чрезвычайно быстро начинает увеличивать свой блеск, в течение нескольких дней достигая —6-й, —7-й абсолютной звездной вели­чины, т. е. сравниваясь в светимости с самыми мощными сверхгигантами. При этом, как нетрудно подсчитать, светимость звезды возрастает в сотни тысяч раз.

После того как звезда достигнет максимума блеска, она начинает ослабевать. На первых порах ослабление блеска происходит довольно быстро, хотя намного медленнее, чем его усиление во время вспышки. Затем падение блеска замедляется и сопровождается иногда отдельными новыми небольшими и короткими усилениями.

По истечении 10—20 лет после вспышки звезда возвращается в свое исходное состояние.

Вспышки новых звезд объясняются накоплением энер­гии в неглубоких слоях звезды и затем быстрым, сопро­вождаемым взрывом освобождением этой энергии.

В ре­зультате взрыва вся оболочка звезды, расположенная над слоем, где произошло выделение энергии, отделяется от звезды и рассеивается в пространстве.

При вспышке но­вой звезды в течение нескольких дней, выделяется энер­гия порядка 1038 — 103* Дж, т. е. равная энергии, которую Солнце излучает за 10000—100000 лет:

Масса газовой оболочки, выбрасываемой новой звез­дой, относительно невелика и составляет примерно сто­тысячную долю массы звезды. Этим объясняется то, что по истечении 10—20 лет звезда снова возвращается к ис­ходному состоянию: испытанное ею потрясение благода­ря малой потере массы носило временный характер.

Самая большая катастрофа, происходящая со звездой, это вспышка сверхновой звезды. Здесь приставка «сверх» употребляется для того, чтобы подчеркнуть необычайно большую мощность взрыва.

Сверхновая в максимуме блеска имеет        12-^^-18™; значит, в этот момент ее светимость равна светимостям сотен или многих тысяч обычных новых в высшей точке блеска.

Во время вспышки сверхновой светимость звезды возрастает в миллиарды

раз. Выброс материи происходит со скоростью до 6000 км/с. Взрыв зарождается на большой глубине и выброшенная материя составляет значительную долю массы звезды, по крайней мере, несколько процентов. Энергию взрыва можно оценить в 1042 —. 1044 Дж — такую энергию Солнце излучает за миллиарды лет.

По-видимо­му, вспышка сверхновой связана с существенным преоб­разованием природы звезды. После того как блеск самой звезды снова упадет до исходной величины, нельзя ска­зать, что все стало по-старому, так как огромные массы выброшенных газов образуют туманность, обладающую специфическими свойствами.

Сейчас астрономы умеют находить такие туманности — реликты сверхновых, вспышки которых произошли намного раньше, чем чело­век стал наблюдать небо. Наиболее известная из них — Крабовидная туманность — сложное образование, являющееся результатом сравнительно недавней (1054 г.) вспышки сверхновой.

Эта вспышка зарегистрирована в китайских летописях.

Источник: http://www.allkosmos.ru/novye-i-sverxnovye-zvezdy/

Сверхновая звезда

Объекты глубокого космоса > Звезды > Сверхновая звезда

Сверхновая – это, по сути, звездный взрыв и наиболее сильный, который можно наблюдать в космическом пространстве.

Где появляются сверхновые?

Очень часто их можно заметить в других галактиках. Но в нашей это редкое явление для наблюдения, потому что пылевые и газовые дымки перекрывают обзор. Последняя наблюдаемая сверхновая в Млечном Пути была замечена Иоганном Кеплером в 1604 году. Телескоп Чандра смог отыскать лишь остатки от звезды, взорвавшейся больше века назад.

Сверхновая – это огромный взрыв, которым завершают свое существование некоторые звезды

Что приводит к сверхновой?

Сверхновая рождается, когда в центре звезды происходят изменения. Есть два главных типа.

Первый – в двойных системах. Двоичные звезды – объекты, связанные общим центром. Одна из них подворовывает вещество у второй и становится чересчур массивной. Но не способна уравновесить внутренние процессы и взрывается в сверхновой.

https://www.youtube.com/watch?v=-8cL7eceFl4

Второй – в момент смерти. Топливо имеет свойство заканчиваться. В итоге, часть массы начинает поступать в ядро, и оно становится таким тяжелым, что не выдерживает собственной гравитации. Происходит процесс расширения, и звезда взрывается. Солнце – одиночная звезда, но ей не пережить подобного, так как не хватает массы.

Сверхновая 1987А после взрыва (слева) и до этого момента (справа)

Почему исследователи интересуются сверхновыми?

Сам процесс охватывает небольшой временной промежуток, но может очень многое поведать о Вселенной. Например, один из экземпляров подтвердил свойство Вселенной расширяться и то, что темпы увеличиваются.

Также выяснилось, что эти объекты влияют на момент распределения элементов в пространстве. При взрыве звезда выстреливает элементами и космическими обломками. Многие из них даже попадают на нашу планету.

Как их найти?

Для этого исследователи используют различные приборы. Некоторые нужны для наблюдения за видимым светом после взрыва. А другие отслеживают рентгеновские и гамма-лучи. Снимки получают при помощи телескопов Хаббл и Чандра.

Крабовидная туманность – результат взрыва сверхновой

В июне 2012 года начал работать телескоп, фокусирующий свет в области высоких энергий электромагнитного спектра. Речь идет о миссии NuSTAR, которая ищет разрушившиеся звезды, черные дыры и остатки сверхновых. Ученые планируют узнать побольше о том, как они взрываются и создаются.

Чем вы можете помочь?

Для того, чтобы внести свою лепту, вам не нужно становиться ученым. В 2008 году сверхновую нашел обычный подросток. В 2011 году это повторила 10-летняя канадская девочка, рассматривавшая снимок ночного неба на своем компьютере. Очень часто снимки любителей вмещают множество интересных объектов. Немного практики и вы можете найти следующую сверхновую!

Источник: http://v-kosmose.com/zvezdyi-vselennoi/sverhnovaya/

Сверхновая звезда

Сверхновая звезда, или взрыв сверхновой — процесс колоссального взрыва звезды в конце ее жизни. При этом освобождается огромная энергия, а светимость возрастает в миллиарды раз. Оболочка звезды выбрасывается в космос, образуя туманность. А ядро сжимается настолько, что становится либо нейтронной звездой, либо чёрной дырой.

Химическая эволюция вселенной протекает именно благодаря сверхновым. Во время взрыва в пространство выбрасываются тяжелые элементы, образующиеся во время термоядерной реакции при жизни звезды. Далее из этих остатков формируются протозвёзды с планетарными туманностями, из которых в свою очередь образуются звёзды с планетами.

Так же возникла и Земля, все вещество которое нас окружает и из которого мы состоим, зародилось в недрах звёзд, еще до образования Солнца.

Как происходит взрыв

Как известно, звезда выделяет огромную энергию благодаря термоядерной реакции, происходящей в ядре. Термоядерная реакция — это процесс превращения водорода в гелий и более тяжелые элементы с выделением энергии.

Но вот когда водород в недрах заканчивается, верхние слои звезды начинают обрушиваться к центру.

После достижения критической отметки вещество буквально взрывается, всё сильнее сжимая ядро и унося верхние слои звезды ударной волной.

В довольно малом объеме пространства образуется при этом столько энергии, что часть ее вынуждено уносить нейтрино, у которой практически нет массы.

Этот вид сверхновых рождается не из звезд, а из белых карликов. Интересная особенность — светимость всех этих объектов одинакова. А зная светимость и тип объекта, можно вычислить его скорость по красному смещению. Поиск сверхновых типа Ia очень важен, ведь именно с их помощью обнаружили и доказали ускоряющееся расширение вселенной.

Возможно, завтра они вспыхнут

Существует целый список, в который включены кандидаты в сверхновые звёзды. Конечно, достаточно сложно определить, когда именно произойдет взрыв. Вот ближайшие из известных:

  • IK Пегаса. Двойная звезда расположена в созвездии Пегас на удалении от нас до 150 световых лет. Её спутник – массивный белый карлик, который уже перестал производить энергию посредством термоядерного синтеза. Когда главная звезда превратится в красный гигант и увеличит свой радиус, карлик начнёт увеличивать массу за счёт неё. Когда его масса достигнет 1,44 солнечной, может произойти взрыв сверхновой.
  • Антарес. Красный сверхгигант в созвездие Скорпиона, от нас до него 600 световых лет. Компанию Антаресу составляет горячая голубая звезда.
  • Бетельгейзе. Подобный Антаресу объект, находится в созвездии Орион. Расстояние до Солнца от 495 до 640 световых лет. Это молодое светило (около 10 миллионов лет), но считается, что оно достигло фазы выгорания углерода. Уже в течение одного-двух тысячелетий мы сможем полюбоваться взрывом сверхновой.

Влияние на Землю

Сверхновая звезда, взорвавшись поблизости, естественно, не может не повлиять на нашу планету. Например, Бетельгейзе, взорвавшись, увеличит яркость примерно в 10 тысяч раз. Несколько месяцев звезда будет иметь вид сияющей точки, по яркости подобной полной Луне.

Но если какой-либо полюс Бетельгейзе будет обращён на Землю, то она получит от звезды поток гамма-лучей. Усилятся полярные сияния, уменьшится озоновый слой. Это может оказать очень негативное влияние на жизнь нашей планеты.

Всё это только теоретические расчёты, каким же фактически будет эффект взрыва этого супергиганта, точно сказать нельзя.

Смерть звезды, так же, как и жизнь, иногда бывает очень красивой. И пример тому – сверхновые звёзды. Их вспышки мощны и ярки, они затмевают все светила, что расположены рядом.

by HyperComments

Источник: http://light-science.ru/kosmos/vselennaya/sverhnovaya-zvezda.html

Сверхновые звезды | Мир Знаний

Звезды живут не вечно. Они тоже рождаются и умирают. Некоторые из них, подобно Солнцу, существуют по несколько миллиардов лет, спокойно дотягивают до старости, а потом медленно угасают. Другие проживают куда более короткую и бурную жизнь и к тому же обречены на катастрофическую гибель.

Их существование прерывается гигантским взрывом, и тогда звезда превращается в сверхновую. Свет сверхновой озаряет космос: ее взрыв виден на расстоянии многих миллиардов световых лет. Вдруг на небе появляется звезда там, где раньше, казалось бы, ничего и не было. Отсюда и название. Древние считали, что в таких случаях действительно зажигается новая звезда.

Читайте также:  Самые известные космонавты - все о космосе

Сегодня мы знаем, что на самом деле звезда не рождается, а умирает, но название осталось прежним, сверхновая.

СВЕРХНОВАЯ 1987A

В ночь с 23 на 24 февраля 1987 года в одной, из ближайших к нам галактик,. Большом Магеллановом Облаке, отстоящем от нас всего на 163.000 световых лет, в созвездии Золотая Рыба появилась сверхновая.

Она стала заметна даже невооруженному глазу, в мае месяце достигла видимой величины +3, а в последующие месяцы постепенно утрачивала яркость, пока вновь не стала невидима без телескопа или бинокля..

Настоящее и прошлое

Сверхновая 1987A, название которой говорит о том, что это была, первая сверхновая, наблюдавшаяся в 1987 году, стала и первой видимой невооруженным глазом с начала эры телескопов. Дело втом, что последний взрыв сверхновой в нашей Галактике наблюдали в далеком 1604-м, когда телескоп, еще не был изобретен.

Но еще важнее, что звезда* 1987A дала современным агрономам первую возможность наблюдать сверхновую на относительно небольшом расстоянии.

А что там было раньше?

Исследование сверхновой 1987A показало, что она относится к типу II. То есть звезда-прародительница или звезда-предшественник, которую удалось обнаружить на более ранних снимках этого, участка неба, оказалась голубым сверхгигантом, чья масса почти в 20 раз превышала массу Солнца. Таким образом, это была очень горячая звезда, которая быстро исчерпала свое ядерное топливо.

Единственное, осталось после гигантского взрыва, — это быстро расширяющееся газовое облако, внутри которого еще никому не удалось разглядеть нейтронную звезду, чьего возникновения теоретически следовало ожидать. Одни астрономы утверждают, что эта звезда все еще окутана выпущенными газами, тогда как другие выдвинули гипотезу, согласно которой вместо звезды там формируется черная дыра.

Жизнь звезды

Звезды рождаются в результате гравитационного сжатия облака межзвездного вещества, которое, нагреваясь, доводит свое центральное ядро до температур, достаточных для начала термоядерных реакций.

Последующее развитие уже загоревшейся звезды зависит от двух факторов: начальной массы и химического состава, причем первая, в частности, определяет скорость сгорания. Звезды, обладающие более крупной массой, горячее и светлее, но именно поэтому они сгорают раньше.

Таким образом, жизнь массивной звезды короче по сравнению со звездой небольшой массы.

Красные гиганты

О звезде, которая сжигает водород, принято говорить, что она находится в «основной фазе». Большая часть жизни любой звезды совпадает именно с этой фазой.

Например, Солнце находится в основной фазе уже 5 млрд лет и останется в ней еще надолго, а когда этот период закончится, наше светило перейдет в короткую фазу нестабильности, вслед за которой оно снова стабилизируется, на этот раз в форме красного гиганта.

Красный гигант несравнимо крупнее и ярче звезд в основной фазе, но и гораздо холоднее. Антарес в созвездии Скорпион или Бетельгейзе в созвездии Орион — яркие примеры красных гигантов. Их цвет можно сразу же распознать даже невооруженным глазом.

Когда Солнце превратится в красный гигант, его внешние слои «поглотят» планеты Меркурий и Венеру и дойдут до орбиты Земли.

В фазе красного гиганта звезды утрачивают значительную часть внешних слоев своей атмосферы, и эти слои образуют планетарную туманность, подобную М57, туманности Кольцо в созвездии Лира, или М27, туманности Гантель в созвездии Лисичка. И та, и другая прекрасно подходят для наблюдения в ваш телескоп.

Дорога к финалу

С этого момента дальнейшая судьба звезды неотвратимо зависит от ее массы. Если она меньше 1,4 массы Солнца, то после окончания ядерного горения такая звезда освободится от своих внешних слоев и сожмется до белого карлика—финальной стадии эволюции звезды с небольшой массой. Пройдут миллиарды лет, пока белый карлик остынет и станет невидим.

Напротив, звезда с большой массой (как минимум в 8 раз массивнее Солнца), как только заканчивается водород, выживает за счет сжигания газов тяжелее водорода, таких как гелий и углерод.

Пройдя ряд фаз сжатия и расширения, такая звезда через несколько миллионов лет переживает катастрофический взрыв сверхновой, выбрасывая в космос гигантское количество собственного вещества, и превращается в остаток сверхновой. Примерно в течение недели сверхновая превосходит по яркости все звезды своей галактики, а затем быстро темнеет.

В центре остается нейтронная звезда, объект небольшого размера, обладающий при этом гигантской плотностью. Если же масса звезды еще больше, в результате взрыва сверхновой появляются не звезды, а черные дыры.

Типы сверхновых

Изучая свет, идущий от сверхновых, астрономы выяснили, что не все они одинаковы и их можно классифицировать зависимости от химических элементов, представленных в их спектрах.

Особую роль здесь играет водород: если в спектре сверхновой присутствуют линии, подтверждающие наличие водорода то ее относят к типу II; если же таких линий нет, она причисляется к типу I.

Сверхновые типа I разделяют на подклассы la, lb и lс учетом других, элементов спектра.

Разная природа взрывов

Классификация типов и подтипов отражает разнообразие механизмов, лежавших в основе взрыва, и разные типы звезд-предшественниц. Взрывы сверхновых типа таких как SN 1987A, исходят на последней эволюционной стадии звезды, обладающей большой массой (Более чем в 8 раз превышающей массу Солнца).

Сверхновые типа lb и lc возникают в результате коллапса центральных частей массивных звезд, утративших значительную часть их водородной оболочки из-за сильного звездного, ветра или из-за передачи вещества другой звезде в двойной системе.

Разные предшественники

Все сверхновые типа lb, lc и II, происходят от звезд Населения I, то есть от молодых звезд, сосредоточенных в дисках спиральных галактик. Сверхновые типа la, в свою очередь, происходит из старых звезд Населения II, и их можно наблюдать как в эллиптических галактиках, так и в ядрах спиральных галактик.

Этот тип сверхновой родом из белого карлика, входящего в состав двойной системы и оттягивающего вещество у своей соседки.

Когда масса белого карлика достигает предела устойчивости (его называют пределом Чандрасекара),начинается быстрый процесс слияния ядер углерода, и происходит взрыв, в результате которого звезда выбрасывает наружу большую часть своей массы.

Разная светимость

Разные классы сверхновых отличаются друг от друга не только спектром, но и максимальной светимостью, достигаемой ими во взрыве, и тем, как именно эта светимость снижается с течением времени. Сверхновые типа I, как правило, гораздо ярче сверхновых типа II, но при этом они гораздо быстрее тускнеют.

В сверхновых типа I пиковая яркость сохраняется от нескольких часов до нескольких дней, тогда как сверхновые типа II могут просуществовать до нескольких месяцев.

Была высказана гипотеза, согласно которой звезды с очень большой массой (в несколько десятков раз превышающей массу Солнца) взрываются еще более бурно, как «гиперновые», а их ядро превращается в черную дыру.

СВЕРХНОВЫЕ В ИСТОРИИ

Астрономы полагают, что в нашей Галактике в среднем взрывается по одной сверхновой каждые 100 лет. Однако количество сверхновых, исторически задокументированных в последние два тысячелетия, не достигает и 10.

Одна из причин этого может быть связана с тем, что сверхновые, особенно типа II, взрываются в спиральных ветвях, где межзвездная пыль гораздо плотнее и, соответственно, способна затемнить сияние сверхновой.

Первая из увиденных

Хотя ученые рассматривают и другие кандидатуры, на сегодняшний день принято считать, что первое в истории наблюдение за взрывом сверхновой относится к 185 году н.э. Оно было задокументировано китайскими астрономами. В Китае же отмечались и взрывы галактических сверхновых в 386 и в 393 годах.

Затем прошло более 600 лет, и вот, наконец, на небе появилась еще одна сверхновая: в 1006 году в созвездии Волк засияла новая звезда, на этот раз зафиксированная в том числе арабскими и европейскими астрономами.

Это ярчайшее светило (чья видимая величина на пике яркости достигала -7,5) оставалось видимым на небе дольше года. .

Крабовидная туманность

Исключительно яркой была и сверхновая 1054 года (максимальная величина -6), но и ее снова заметили только китайские астрономы, да еще, может быть, американские индейцы. Наверняка это самая известная сверхновая, поскольку ее остаток — Крабовидная туманность в созвездии Телец, которую Шарль Мессье внес в свой каталог под номером 1.

Китайским астрономам мы обязаны и сведениями о появлении в 1181 году сверхновой в созвездии Кассиопея. Там же взорвалась и еще одна сверхновая, на этот раз в 1572 году.

Эту сверхновую заметили и европейские астрономы, в том числе Тихо Браге,который описал и ее появление, и дальнейшее изменение ее яркости в своей книге «О новой звезде», чье название и дало начало термину, которым принято обозначать такие звезды.

Сверхновая Тихо

Спустя 32 года, в 1604-м, на небе появилась еще одна сверхновая. Тихо Браге передал эту информацию своему ученику Иоганну Кеплеру, который стал отслеживать «новую звезду» и посвятил ей книгу «О новой звезде в ноге Змееносца». Эта звезда, наблюдаемая и Галилео Галилеем, на сегодняшний день остается последней из видимых невооруженным глазом сверхновых, взорвавшихся в нашей Галактике.

Однако нет никаких сомнений в том, что еще одна сверхновая взорвалась в Млечном Пути, снова в созвездии Кассиопея (это созвездие-рекордсмен насчитывает три галактические сверхновые). Хотя визуальные свидетельства этого события отсутствуют, астрономы нашли остаток звезды и подсчитали, что он должен соответствовать взрыву, произошедшему в 1667 году.

За пределами Млечного Пути, помимо сверхновой 1987A, астрономы наблюдали и вторую сверхновую, 1885, которая взорвалась в галактике Андромеда.

Наблюдение за сверхновыми

Чтобы охотиться за сверхновыми, необходимы терпение и правильный метод.

Первое нужно, так как никто не гарантирует, что вам удастся открыть сверхновую в первый же вечер. Без второго не обойтись, если вы не хотите терять время и действительно стремитесь повысить свои шансы на открытие сверхновой.

Основная проблема состоит в том, что физически невозможно предугадать, когда и где произойдет взрыв сверхновой в одной из далеких галактик.

Поэтому охотник за сверхновыми должен каждую ночь сканировать небо, проверяя десятки галактик, тщательно отобранных с этой целью.

Читайте также:  К вопросу о терраформировании и колонизации марса - все о космосе

Что нужно делать

Одна из наиболее распространенных техник состоит в наведении телескопа на ту или иную галактику и сопоставлении ее облика с более ранним изображением (рисунком, фотографией, цифровым изображением), в идеальном варианте приблизительно с тем же увеличением, что и у телескопа, с помощью которого ведутся наблюдения. Если там появилась сверхновая, это сразу бросится вам в глаза. Сегодня многие астрономы-любители располагают оборудованием, достойным профессиональной обсерватории, таким как телескопы с компьютерным управлением и ПЗС-камерами, позволяющими делать фотографии звездного неба сразу в цифровом формате. Но даже в наши дни множество наблюдателей охотятся за сверхновыми, просто наводя телескоп на ту или иную галактику и глядя в окуляр в надежде увидеть, не появится ли где-то еще одна звезда.

Необходимое оборудование

Для охоты за сверхновыми не требуется слишком сложного оборудование Конечно, нужно учитывать мощность вашего телескопа.

Дело в том, что у каждого инструмента есть предельная звездная величина, которая зависит от разных факторов, и важнейший из них —диаметр объектива (однако важна и яркость неба, зависящая от светового загрязнения: чем оно меньше, тем выше предельная величина).

С помощью вашего телескопа вы можете рассматривать сотни галактик в поисках сверхновых.

Однако,прежде чем приступить к наблюдению, очень важно иметь под рукой небесные карты для определения галактик, а также рисунки и фотографии галактик, которые вы планируете наблюдать (в интернете есть десятки ресурсов для охотников за сверхновыми), и, наконец, журнал наблюдений, куда вы будете заносить данные по каждому из сеансов наблюдений.

Ночные трудности

Чем больше охотников за сверхновыми, тем больше шансов заметить их появление непосредственно в момент взрыва, что дает возможность целиком отследить их кривую блеска. С этой точки зрения астрономы-любители оказывают ценнейшую помощь профессионалам.

Охотники за сверхновыми должны быть готовы терпеть ночной холод и влажность. Кроме того, им придется бороться с сонливостью (термос с горячим кофе всегда входит в базовое снаряжение любителей ночных астрономичеких наблюдений). Но рано или поздно их терпение будет вознаграждено!

    2362      

Поддержите проект Мир Знаний, подпишитесь на наш канал в Яндекс Дзен

Источник: http://mir-znaniy.com/sverhnovyie-zvezdyi/

Как рождаются звезды: от водорода до сверхновой

Как рождаются звезды: от водорода до сверхновой

Когда звезды подмигивают нам с ночного неба, вряд ли мы задумываемся о том, что видим их такими, какими они были сотни и тысячи лет назад. Именно столько требуется фотонам, чтобы достичь наших глаз, двигаясь со световой скоростью. 

                        
Многие из далеких солнц, вероятно, уже давным-давно погасли, другие, пока невидимые для нас, уже успели родиться. Об их появлении рано или поздно узнают наши потомки.

Строительный материал для звезд

Для появления на свет новой звезды требуется огромное количество водорода ? простейшего из всех существующих молекул. Она состоит из двух атомов, а те, в свою очередь, из ядра с одним протоном, вокруг которого расплылся в квантовом облаке один единственный электрон.

А еще необходим дейтерий, тяжелый водород, в ядре которого помимо протона содержится еще один нейтрон ? элементарная частица, не имеющая электрического заряда.

Водород ? одно из первых веществ, образовавшихся после Большого Взрыва, после того как раскаленная до невероятных температур материя в виде протонов, нейтронов, электронов и других элементарных частиц начала конденсироваться.

Снимок ближайшей к Солнцу звезды – Проксимы Центавра

©ESA/Hubble & NASA

Сразу после Большого Взрыва

Молекулы водорода образовывались в гигантских количествах, когда температура юной Вселенной несколько понизилась, и протоны начали объединяться с электронами.

Эта фаза началась по современным представлениям уже через одну секунду после Большого Взрыва и продолжалась в течение трех минут; за это время температура Вселенной резко упала.

Молодая Вселенная состояла на 75% из водорода, с 25% гелия, a также следами других элементов ? до бора (не считая антиматерии).

Строительный материал для рождения звезд был готов, но одного наличия водорода было мало. Молекулы должны были сконденсироваться настолько, чтобы гравитационная сила притяжения между ними привела к термоядерной реакции.

Непосредственно после Большого Взрыва материя была равномерно распределена в пространстве и, вероятно, так бы и осталась водородным облаком, если бы не квантовые флуктуации, которые привели к колебаниям плотности газа и создали определенные структуры.

Рассеянное звездное скопление Плеяды в созвездии Тельца

©Roberto Colombari  

Звездная колыбель

Следы этих структур до сих пор можно обнаружить в виде космического фонового излучения и межзвездных туманностей во Вселенной, состоящих из водорода и гелия. Именно из такого водородного облака и образуются звезды, когда плотность газа достигает определенного, очень высокого уровня.

При этом температура газа возрастает, и его молекулы начинают вращение. Чем плотнее становится облако, тем вращение усиливается, молекулы водорода сталкиваются и излучают фотоны в инфракрасном спектре.

При вращении молекулярное облако, именуемое также звездной колыбелью, коллапсирует, но одновременно возникают центробежные силы, которые отталкивают сгущающуюся материю наружу. Так возникает протопланетный диск, в котором могут сформироваться планеты ? скорее всего это будут газовые гиганты, вроде Юпитера. 

Звездное сверхскопление Westerlund 1

©ESO/VPHAS+ Survey/N. Wright

Рождение звезды

Примерно через 50 млн лет газовое облако, наконец, становится протозвездой ? вращающимся плазменным шаром. При этом молекулы водорода из-за чудовищных температур разрушаются, образуя отдельные атомы.

Какая-то часть протозвезд так и не достигает температуры, необходимой для термоядерного синтеза. Такие протозвезды образуют коричневые карлики, которые постепенно остывают в течение нескольких сотен млн лет. Их масса невелика ? всего 1–10 % солнечной.

Но в крупных протозвездах процесс коллапса продолжается, внутренняя температура возрастает, пока энергия атомов водорода не достигает критического значения, при котором начинается термоядерная реакция. Энергия гравитации превращается в тепло, плазменный шар начинает излучать, гравитационный коллапс приостанавливается ? наша звезда готова. 

Источник: https://naked-science.ru/article/nakedscience/birth-of-stars

Сверхновые звезды

Взрыв сверхновой звезды – это событие невероятных масштабов. Фактически, взрыв сверхновой означает конец ее существования или, что также имеет место, перерождение в виде черной дыры или нейтронной звезды. Конец жизни сверхновой всегда сопровождается взрывом огромной силы, во время которого вещество звезды выбрасывается в космос с невероятной скоростью и на огромные расстояния.

Взрыв сверхновой длится всего несколько секунд, но за этот кротчайший промежуток времени выделяется просто феноменальное количество энергии. Так к примеру, вспышка сверхновой может выделять в 13 раз больше света, чем целая галактика, состоящая из миллиардов звезд, а выделяемое за секунды количество радиации в виде гамма- и рентгеновских волн в разы больше чем за миллиарды лет жизни.

Поскольку вспышки сверхновых длятся совсем недолго, особенно с учетом космических масштабов и величин, узнают о них в основном по последствиям. Такими последствиями являются огромных размеров газовые туманности, которые еще очень долгое время после взрыва продолжают светиться и расширяться в пространстве.

Пожалуй, самой известной туманностью образованной в результате вспышки сверхновой является Крабовидная туманность.

Благодаря хроникам древнекитайских астрономов известно, что возникла она после взрыва звезды в созвездии Тельца в 1054 году. Как можно догадаться, вспышка была настолько яркой, что наблюдать ее можно было невооруженным взглядом.

Сейчас же, Крабовидную туманность можно увидеть в темную ночь при помощи обычного бинокля.

Крабовидная туманность до сих пор продолжает расширяться со скоростью 1500 км в секунду. На данный момент ее размер превышает 5 световых лет.

Фото выше скомпановано из трех снимков, сделанных в трех разных спектрах: рентгеновском (телескоп Чандра), инфракрасном (телескоп Спитцер) и обычном оптическом (телескоп Хаббл). Рентгеновское излучение представлено голубым цветом, его источник – пульсар – невероятно плотная звезда, образованная после смерти сверхновой.

Туманность Симеиз 147 – одна из самых крупных известных на данный момент. Сверхновая взорвавшаяся приблизительно 40 000 лет назад, породила туманность размерами в 160 световых лет. Открыта была советскими учеными Г. Шайоном и В. Газе в 1952 году в одноименной Симеизской обсерватории.

На фото последняя вспышка сверхновой, которую можно было наблюдать невооруженным глазом. Произошла в 1987 в галактике Большое Магеланово Облако на расстоянии 160 000 световых лет от нас. Большой интерес представляют необычные кольца в виде цифры 8, о истинной природе которых ученые пока строят только предположения.

Туманность Медуза из созвездия Близнецы изучена не так хорошо, но весьма популярна из-за небывалой красоты и крупной звезды-компаньона, которая периодически изменяет свою яркость.

Еще несколько снимков последствий взрывов сверхновых:

Источник: http://wildwildworld.net.ua/articles/sverkhnovye-zvezdy

Сверхновая звезда

Самая большая катастрофа, происходящая со звездой, – это вспышка сверхновой, возникающая на заключительной стадии эволюции звезд большой массы – гигантов и сверхгигантов. Во время мощнейших взрывов за несколько секунд высвобождается количество энергии, сопоставимое с энергией, испущенной звездой за всю свою жизнь.

Хотя природа сверхновых оставалась многие века непознанной, это одни из самых наблюдаемых в предшествующие эпохи небесных объектов. И действительно, многие из них настолько яркие, что их можно хорошо видеть невооруженным глазом, а в некоторых случаях даже среди бела дня. Первое “официальное” свидетельство о сверхновых относится к 185 году н. э. Исторически значимые сверхновые наблюдали Тихо Браге в 1572 году и Кеплер в 1604 году. Кроме того, сверхновую 1054 года наблюдали древние китайские и японские астрономы. Сегодня она известна как туманность M1 (Крабовидная туманность).

ПРОИСХОЖДЕНИЕ.

Механизмы взрывов сверхновых различаются в зависимости оттого, принадлежит ли звезда бинарной системе или она изолированная. В первом случае взрываются лишь второстепенные звезды системы белый карлик по такой же схеме, как и в случае с новой.

Белый карлик вступает в гравитационное взаимодействие со вторым звездным компонентом, притягивая материю с его поверхности.

Захваченная таким образом материя падает на поверхность белого карлика, раскаляется, и начинается ядерная реакция, которая приводит к мгновенному разрушению бинарной системы.

А вот во втором случае звезда самовзрывается. Как известно, жизнь любой звезды определяется шатким равновесием между центростремительной гравитационной силой составляющей ее материи и центробежной силой излучения, возникающего в ходе ядерных реакций, происходящих в ее недрах.

Читайте также:  Тунгусский метеорит - все о космосе

После того как пройдены все возможные циклы ядерных реакций, это хрупкое равновесие нарушается. В этот момент внезапно усиливается гравитационная сила, и звезда начинает быстро сжиматься.

Последующий резкий разогрев приводит к началу ядерной реакции в ядре звезды, в результате которой высвобождается энергия, приводящая к взрыву и исчезновению звезды.

ХАРАКТЕРИСТИКИ.

Сверхновые – особый случай переменных звезд, у которых переменность блеска одинаковая в связи с тем, что она связана с разрушением звезды. Но кривая изменения блеска выстраивается и для сверхновых, как и для других переменных звезд.

Хотя эти графики для разных сверхновых заметно различаются, существуют легко распознаваемые общие черты. Во-первых, у типичной кривой блеска имеется характерный крутой подъем, доходящий до максимального значения блеска за несколько суток.

Сверхновая имеет максимум блеска в течение приблизительно 10 сут, после чего он сначала прерывисто, затем почти равномерно спадает. Кстати, интерпретируя кривую изменения блеска сверхновой, можно установить динамику взрыва и изучить эволюцию звезды.

Часть кривой между началом подъема и точкой максимального блеска совпадает со взрывом звезды, а последующее понижение графика соответствует расширению и охлаждению выбросов газа из взорвавшейся звезды, так называемого остатка сверхновой.

КЛАССИФИКАЦИЯ.

Сверхновые делятся на два основных типа. Сверхновые типа I (SN I) произошли, скорее всего, от старых звезд, представлявших собой бинарные системы. Их графики изменения блеска схожи: с быстрым нарастанием блеска, после которого следует снижение приблизительно на 3 звездные величины в течение месяца.

Кроме того, в их спектре отсутствует полоса водорода. Сверхновые типа II (SN II), напротив, образуются из молодых звезд с массой порядка десятка солнечных масс; их постоянно наблюдают в спиральных и неправильных галактиках. Сверхновые типа II менее ярки, форма кривой блеска бывает различной.

В их спектрах присутствуют водородные полосы.

ЗНАЧЕНИЕ СВЕРХНОВЫХ.

По теоретическим выкладкам в нашей Галактике в среднем должна взрываться одна звезда примерно раз в 30 лет, тем не менее последний взрыв наблюдался в 1604 году.

Вероятно, некоторые сверхновые, взорвавшиеся в Галактике, находятся по другую сторону галактического ядра и поэтому недоступны для наблюдения.

Самая последняя сверхновая SN I 987A наблюдалась в 1987 году в Большом Магеллановом Облаке.

Похоже, сверхновые играют очень важную роль в звездообразовании, потому что во время взрыва образуется ударная волна, способствующая уплотнению звездообразующих туманностей. Кроме того, они выбрасывают в космос составляющую их материю, что меняет состав межзвездной среды, обогащая ее металлами.

И наконец, во время взрыва не происходит полного разрушения самой звезды. Из сверхновых образуются нейтронные звезды и пульсары, а также черные дыры.

Источник: http://cosmoss1.blogspot.com/2015/09/blog-post_2.html

Сверхновые звезды – Звездный каталог. Наша планета и то, что вокруг неё

Звездный каталог » Основы астрономии » Сверхновые звезды

  • Рубрика: Основы астрономии
  • звезды

4 июля 1054 года китайский летописец Мин Туань-линь записал: «В первый год периода Чи-хо, в пятую Луну, в день Чи-чу появилась звезда-гостья к юго-востоку от звезды Тиен-Куан и исчезла более чем через год».

Собрат же Мин Туань-линя записал в тоже время: «Она была видна днем, как Венера, лучи света исходили из нее во все стороны, и цвет ее был красновато-белый. Так была видна она 23 дня».

Долгое время считалось, что речь в тех летописях шла о новых звездах.

 Но вот почти через тысячу лет после смерти Мин Туан-линя астрономы изучили подробно необычайную туманность, видимую в телескоп к юго-востоку от китайской звезды Тиен-Куан (Дзета Тельца), а туманность за ее своеобразную форму наблюдатели прозвали крабовидной.

Как краб туманных очертаний, мерцает свет этого слабого пятнышка, и в его центре на фотографиях видны две звездочки шестнадцатой звездной величины, то-есть в 10 тысяч раз более слабые, чем звезды, едва видимые невооруженным глазом в темную, безлунную ночь.

Крабовидная туманность — остатки вспышки сверхновой звезды

От всех других туманных пятен, десятками тысяч видимых на небе, крабовидную туманность отличают две особенности.

  • Во-первых, сравнение фотографий ее, cделанных с промежутком времени в 30 лет, позволило ещё в 1942 году подтвердить обнаруженный ранее факт: туманность заметно расширяется во все стороны от своего центра, занятого двумя звездочками.
  • Во-вторых, вид спектральных линий показывает, что туманность расширяется со скоростью 1300 км/сек, то-есть раз в сто большей, чем у других газовых туманностей, также обнаруживающих расширение.

Сопоставляя видимую угловую скорость расширения туманности с его линейной скоростью, определенной по спектру, мы узнаем расстояние до туманности (4100 световых лет), а отсюда и светимость двух звездочек в ее центре (она та же, что у Солнца). Туманность огромна, свет от одного ее края до другого идет шесть лет. Для сравнения: диаметр орбиты Плутона в солнечной системе он пересекает за одиннадцать часов.

Зная скорость видимого углового расширения туманности, можно подсчитать, когда же все ее вещество было сосредоточено в одном месте — там, в центре, где видны две звездочки. И что же оказывается? Это было около восьмисот лет назад, то-есть примерно в то время, когда китайские летописцы видели вблизи этого же места свою «звезду-гостью».

Может ли это быть простым совпадением? Может ли быть, чтобы такая исключительная туманность случайно возникла в то время и в том месте, где сияла исключительная новая звезда?

Не оставила ли вместо себя после вспышки эта звезда крабовидную туманность и одну из слабых звездочек, видимых сейчас в ее центре? Но для создания такой колоссальной туманности, массу которой оценивают в 15 солнечных масс, должна была произойти катастрофа, по своей грандиозности далеко превышающая те, которые бывают у обычных новых звезд. Именно по этой причине для подобных взрывающихся звезд в отличие от новых, было дано новое название: сверхновые звезды.

Взрыв сверхновой звезды

Сейчас установлено, что в среднем, 1 раз за 300—400 лет в каждой из галактик, вспыхивают звезды, названные сверхновыми. И каждый такой звездный взрыв — событие во истину космического масштаба.

Внезапно появившаяся в какой-нибудь звездной системе сверхновая звезда в своем наибольшем блеске светит так же, как все остальные звезды этой системы, вместе взятые, а иногда даже и затмевает их своим блеском.

Иначе говоря, в течение нескольких дней сверхновая звезда светит так же, как сто миллионов солнц.

Сто миллионов солнц, как бы слитые в одной звезде, в одном солнце! Вот какие бывают сверхновые, или, если хотите, сверхзвезды, сверхсолнца!

Сверхновые звезды ярче обычных новых звезд примерно настолько же, насколько обычные новые бывают ярче звезд, наиболее часто встречающихся во вселенной. Как все это ни невероятно, но это — наблюдаемый факт, а с фактами, как известно, не спорят.

Спектр сверхновых звезд в наибольшем блеске не содержит заметных линий — ни темных, ни ярких. Последние появляются потом, они необычайной ширины, свидетельствующей о выбросе газов со скоростью около 6000 км/сек, но какие это газы, пока не совсем ясно.

К сожалению, мы ничего не можем сказать ни о том, почему появляются сверхновые, ни о том, что представляли собой эти звезды до взрыва. С момента более-менее постоянного наблюдения неба и появления мощной астрономической аппаратуры, мы ещё не разу не становились свидетелями взрыва сверхновой звезды. Всё что у нас есть — исследования остатков «нашей» сверхновой, взорвавшейся в 1054 году.

Как вы помните — в центре крабовидной туманности находятся две небольшие звезды. Так вот, обе из них давно просканированы спектрографом и мы хорошо знаем о том, из чего они состоят.

У одной из них спектр очень напоминает наше Солнце, но, вероятно, она гораздо ближе к нам, чем туманность, и лишь случайно на нее проецируется из-за погрешностей приборов и чудовищного расстояния.

Сверхновая звезда после взрыва — все что осталось от былого величия, это маленькая звездочка в центре и громадная корона сброшенной газопылевой оболочки звезды

А вот другая звезда гораздо интереснее — в её спектре никаких линий не заметно, но распределение энергии в нем указывает на очень высокую температуру. По яркости туманности в сравнении со звездочкой можно оценить температуру звезды.

Так вот, согласно Б. Воронцову-Вельяминову, температура этой «крошки» составляет не менее 140 тысяч градусов, то есть это самая горячая из всех известных звезд. Вероятно, она-то и является тем, что осталось от недолговечной сверхзвезды.

В наибольшем блеске та сверхновая звезда должна была быть сверхзвездой — не только сверх-яркой, но и сверх-громадной.

Она должна быть в тысячи раз больше Солнца по диаметру, размером почти во всю нашу солнечную систему.

После вспышки же, судя по ядру крабовидной туманности, она стала в 50 раз меньше Солнца, то-есть лишь вдвое больше Земли, и ее средняя плотность составляет около 300 000 грамм на квадратный сантиметр.

Иными словами, наперсток с веществом этой звезды будет весить 300 килограммов и потребует для перевозки грузовик!

В общем и целом, на этом современные познания о природе сверхновых звезд заканчиваются.

Единственное, о чем стоит упомянуть, так это о том, что крабовидная туманность особенно сильно излучает красные лучи, обязанные некоторым линиям спектра азота.

Это заставило поискать подтверждения тому, что яркая новая звезда, наблюдавшаяся Кеплером в 1604 году в созвездии Змееносца, тоже была сверхновой.

Дополнительным доказательством этому является и то, что когда участок неба указанный Кеплером был сфотографированы на пластинках, чувствительных к красным лучам, и на снимке обнаружилась невидимая ранее слабая туманность. Спектр ее оказался похожим на спектр крабовидной туманности, и центр ее совпал с местом вспышки новой звезды Кеплера. Но и там нет звезд ярче 18-ой звездной величины.

По всей видимости, звезда Кеплера, а также «новая звезда, бывшая ярче Венеры» и наблюдавшаяся даже днем Тихо Браге в 1572 году в созвездии Кассиопеи, были тоже сверхновыми звездами, вспыхнувшими в нашей Галактике.

Список источников литературы

Связанные материалы:

Источник: http://starcatalog.ru/osnovyi-astronomii/sverhnovyie-zvezdyi.html

Ссылка на основную публикацию