Биография карла гаусса – все о космосе

Карл Гаусс — интересные данные и факты

Биография Карла Гаусса - все о космосе

Самым величайшим математиком всех времен и народов принято считать знаменитого ученого из Европы Иоганна Карла Фридриха Гаусса. Несмотря на то, что сам Гаусс был выходцем из беднейших слоев общества: его отец был водопроводчиком, а дед — крестьянином, судьба уготовила ему великую славу.

Мальчик уже в возрасте трех лет показал себя вундеркиндом, он умел считать, писать, читать, даже помогал своему отцу в его работе.

Юное дарование, конечно же, было замечено. Его любознательность перешла по наследству от дяди, брата матери.

Карл Гаусс – сын бедного немца не только получил образование в колледже, но уже в возрасте 19-ти лет считался лучшим европейским математиком того времени.

Интересные факты

  1. Сам Гаусс утверждал о том, что считать он начал раньше, чем говорить.
  2. У великого математика было хорошо развито слуховое восприятие: однажды в возрасте 3-х лет он на слух определил ошибку в подсчетах, выполняемых его отцом, когда тот подсчитывал заработок своих помощников.

  3. Гаусс довольно недолгое время провел в первом классе, его очень быстро перевели во второй. Учителя сразу распознали в нем талантливого ученика.
  4. Карлу Гауссу довольно легко давалось не только изучение цифр, но и языкознание. Он мог свободно говорить на нескольких языках.

    Математик довольно долго в юном возрасте не мог определиться, какую ученую стезю ему стоит выбрать: точные науки, либо же филологию. Выбрав в конечном итоге своим увлечением математику, Гаусс позднее писал свои труды на латыни, английском, немецком языках.

  5. В возрасте 62-х лет Гаусс начал активно изучать русский язык.

    Ознакомившись с трудами великого русского математика Николая Лобачевского, он захотел прочесть их в оригинале. Современники отмечали тот факт, что Гаусс, став знаменитым, никогда не читал трудов других математиков: обычно он знакомился с концепцией и сам старался ее либо доказать, либо опровергнуть. Труд Лобачевского стал исключением.

  6. Обучаясь в колледже, Гаусс интересовался трудами Ньютона, Лагранжа, Эйлера и прочих других выдающихся ученых.

  7. Самым плодотворным периодом в жизни великого европейского математика считается время его обучения в колледже, где им были созданы закон взаимности квадратичных вычетов и метод наименьших квадратов, а также была начата работа по исследованию нормального распределения ошибок.

  8. После учебы Гаусс отправился жить в Брауншвейг, где он был удостоен стипендии. Там же математик начал работу над доказыванием основной теоремы алгебры.
  9. Карл Гаусс являлся членом-корреспондентом Петербургской Академии наук.

    Данное почетное звание он получил после того, как обнаружил месторасположение малой планеты Цереры, произведя ряд сложнейших математических расчетов. Вычисление траектории Цереры математическим путем сделало имя Гаусса известным всему ученому миру.

  10. Изображение Карла Гаусса имеется на денежной банкноте Германии достоинством в 10 марок.

  11. Имя великого европейского математика отмечено на спутнике Земли – Луне.
  12. Гаусс разработал абсолютную систему единиц: принял за единицу массы – 1 грамм, за единицу времени – 1 секунду, за единицу длины – 1 миллиметр.
  13. Карл Гаусс известен своими исследованиями не только в алгебре, но также и в физике, геометрии, геодезии и астрономии.

  14. В 1836 году совместно со своим другом физиком Вильгельмом Вебером Гаусс создал общество по изучению магнетизма.
  15. Гаусс очень боялся критики и непонимания со стороны его современников, направленных в его адрес.

  16. В среде уфологов бытует мнение, что самым первым человеком, предложившим установить контакт с внеземными цивилизациями, был великий немецкий математик — Карл Гаусс. Он высказал свою точку зрения, согласно которой нужно было в сибирских лесах вырубить участок в форме треугольника и засеять его пшеницей.

    Инопланетяне, увидев такое необычное поле в виде аккуратной геометрической фигуры, должны были понять, что на планете Земля живут разумные существа. Но доподлинно неизвестно, выступал ли на самом деле Гаусс с подобным заявлением, либо же, эта история является чьей-то выдумкой.

  17. В 1832 году Гауссом была разработана конструкция электрического телеграфа, которую он спустя некоторое время доработал и усовершенствовал совместно с Вильгельмом Вебером.
  18. Великий европейский математик был дважды женат. Своих жен он пережил, а они в свою очередь оставили ему 6 детей.
  19. Гаусс проводил исследования в области оптоэлектроники и электростатики.

На жизнь юного Карла повлияло желание его матери сделать из него не грубого и неотесанного человека, каким был его отец, а умную и разностороннюю личность.  Она искренне радовалась успехам сына и боготворила его до конца своей жизни.

Гаусса многие ученые считали отнюдь не математическим королем Европы, его называли королем мира за все исследования, труды, гипотезы, доказательства, созданные им.

В последние годы жизни математического гения ученые мужи воздавали ему славу и почет, но, несмотря на популярность и мировую известность Гаусс так и не обрел полноценного счастья.

Однако же по воспоминаниям его современников великий математик предстает позитивным, дружелюбным и жизнерадостным человеком.

Гаусс работал практически до своей кончины – 1855 года. До самой смерти этот талантливый человек сохранял ясность ума, юношескую жажду к знаниям и вместе с тем безграничное любопытство.

Источник: https://vivareit.ru/karl-gauss-interesnye-dannye-i-fakty/

Карл Фридрих Гаусс биография

Карл Фридрих Гаусс был выдающимся математиком, который доказал ряд алгебраических и геометрических теорем.

Карл Фридрих Гаусс, сын бедняка и необразованной матери, самостоятельно разгадал загадку даты собственного рождения и определил её как 30 апреля 1777 г. Гаусс с детства проявлял все признаки гениальности.

Главный труд всей своей жизни, «Арифметические исследования», юноша закончил ещё в 1798 г., когда ему был всего 21 год, хотя издан он будет лишь в 1801 г. Работа эта имела первостепенную важность для совершенствования теории чисел как научной дисциплины, и представила эту область знаний в том виде, в каком мы знаем её сегодня.

Потрясающие способности Гаусса так поразили герцога Брауншвейгского, что он отправляет Карла на обучение в Карлов коллегиум (ныне – Брауншвейгский технический университет), который Гаусс посещает с 1792 г. по 1795 г. В 1795-1798 г.г. Гаусс переходит в Гёттингский университет.

За свои университетские годы математик доказал немало значимых теорем.

1796 г. оказывается самым успешным как для самого Гаусса, так и для его теории чисел. Одно за другим, он совершает важные открытия. 30 марта, например, он открывает правила построения правильного семнадцатиугольника. Он совершенствует модулярную арифметику и в значительной мере упрощает манипуляции в теории чисел.

8 апреля Гаусс доказывает закон взаимности квадратичных вычетов, что позволяет математикам найти решение любого квадратичного уравнения модулярной арифметики. 31 мая он предлагает теорему простых чисел, давая тем самым доступное объяснение каким образом простые числа распределяются среди целых чисел.

10 июля учёный делает открытие, что любое целое положительное число может быть выражено суммой не более трёх треугольных чисел.

В 1799 г.

Гаусс заочно защищает диссертацию, в которой приводит новые доказательства теоремы, гласящей, что каждая целая рациональная алгебраическая функция с одной переменной может быть представлена произведением действительных чисел первой и второй степени.

Он подтверждает фундаментальную теорему алгебры, которая гласит, что каждый непостоянный многочлен от одной переменной со сложными коэффициентами имеет хотя бы один комплексный корень. Его усилия в значительной мере упрощают концепцию комплексных чисел.

А в это время итальянский астроном Джузеппе Пиацци открывает карликовую планету Цереру, которая мгновенно исчезает в солнечном свечении, но, через несколько месяцев, когда Пиацци ожидает снова увидеть её на небе, Церера не появляется.

Гаусс, которому только исполнилось 23 года, узнав о проблеме астронома, берётся за её разрешение. В декабре 1801 г., через три месяца напряжённой работы, он определяет позицию Цереры на звёздном небе с погрешностью всего в полградуса.

В 1807 г. гениальный учёный Гаусс получает пост профессора астрономии и главы астрономической обсерватории Гёттингена, который он будет занимать всю оставшуюся жизнь.

В 1831 г. Гаусс знакомится с профессором физики Вильгельмом Вебером, и знакомство это оказалось плодотворным. Их совместный труд приводит к новым открытиям в области магнетизма и установлению правил Кирхгофа в области электричества. Сформулировал Гаусс и закон собственного имени. В 1833 г.

Вебер и Гаусс изобретают первый электромеханический телеграф, связавший обсерваторию с Институтом физики Гёттингена. Вслед за этим, во дворе астрономической обсерватории строится обсерватория магнетическая, в которой Гаусс, совместно с Вебером, основывает «Магнетический клуб», занимавшийся замерами магнитного поля Земли в разных точках планеты.

Гаусс также успешно разрабатывает технику определения горизонтальной составляющей магнитного поля Земли.

Личная жизнь Гаусса была чередой трагедий, начиная с преждевременной смерти его первой жены, Джоанны Остофф, в 1809 г., и последовавшей за ней кончины одного из их детей, Луи. Гаусс женится снова, на лучшей подруге своей первой жены Фредерике Вильгельмине Вальдек, но и она, после долгой болезни, умирает. От двух браков у Гаусса родилось шестеро детей.

Гаусс умер в 1855 г. в Гёттингене, Ганновер (ныне – Нижняя Саксония в Германии). Тело его было кремировано и захоронено в Альбанифридхофе. Согласно результатам изучения его мозга Рудольфом Вагнером, мозг Гаусса имел массу 1.492 г и площадь сечения мозга 219.588 мм² (34.362 квадратных дюйма), что научно доказывает, что Гаусс был гением.

Будь в числе первых на доске почета

Источник: https://obrazovaka.ru/carl-friedrich-gauss.html

Ученые астрономы :: Карл Фридрих Гаусс

Карл Фридрих Гаусс, которому современники заслуженно присвоили титул короля математиков, родился 30 апреля 1777 года в городе Брауншвейг, столице одноименного герцогства. Уже в раннем детстве он проявил свои незаурядные способности к точным наукам, за что получил прозвище «вундеркинд» — чудо-ребенок.

Способного ученика заметил его преподаватель Мартин Бартельс (в будущем учитель Н.Лобачевского) и помог ему получить стипендию для получения дальнейшего образования.

Благодаря этому, в 1795 году Гаусс успешно окончил колледж в Брауншвейге и вскоре поступил в Геттингенский университет, где проучился следующие три года, показав выдающиеся результаты не только в математике, но и в изучении иностранных языков.

Именно здесь молодой ученый сделал свое первое открытие, доказав возможность построения правильного семнадцатиугольника с помощью линейки и циркуля. Он также закончил здесь свою первую научную работу «Арифметические исследования», которая увидела свет в 1801 году.

До 1807 года Гаусс жил в Брауншвейге, а затем переехал в Геттинген, где по рекомендации другого великого немецкого ученого и исследователя Александра Гумбольдта был назначен на должность директора местной обсерватории. Здесь он проработал до самой смерти, 23 февраля 1855 года.

Гаусс в первую очередь вошел в историю как выдающийся математик, однако, его вклад в астрономическую науку также достаточно значителен.

Именно он впервые выполнил расчет параметров орбиты только что открытой малой планеты Церера.

Благодаря этому было установлено, что данное небесное тело не относится ни к одной из известных на тот момент категорий небесных тел. Так состоялось открытие пояса астероидов, расположенного между Марсом и Юпитером.

А в 1809 году вышла знаменитая работы Гаусса «Теория движения небесных тел». В ней ученый изложил теорию учета возмущений орбит, которая впоследствии стала канонической. Еще через два года Гаусс точно вычисляет орбиту только что обнаруженной кометы, а на следующий год производит аналогичные расчеты для другой кометы.

Математические же заслуги Гаусса ставят его в один ряд с величайшими учеными в истории. Он впервые нашел строгое доказательство основной теоремы алгебры, ввел в теорию поверхностей термин «гауссова кривизна», разработал основы дифференциальной геометрии.

Работа «Исследования относительно кривых поверхностей», опубликованная в 1822 году, стала классикой еще при жизни ее автора. В 1825 году Гаусс открыл комплексные целые числа, названные его именем.

С их помощью ему удалось доказать ряд арифметических теорем, включив результаты своих исследований в новый труд «Теория биквадратичных вычетов» (1832 год). И многое другое стало достоянием науки благодаря гению немецкого ученого.

Помимо математики Гаусс занимался изучением явлений магнетизма и электричества. Вместе с Вильгельмом Вебером он изобретает первую действующую модель электрического телеграфа, которую демонстрирует широкой публике в 1833 году. В честь заслуг Гаусса его именем названа единица измерения магнитной индукции (гаусс).

Кроме того, ученый хорошо знал несколько языков – латынь, английский, французский. Гаусс умел читать и на русском языке.

За большие заслуги перед наукой Карл Фридрих Гаусс был избран иностранным членом Петербургской Академии наук, а также награжден золотыми медалями Лондонского Королевского общества и Парижской Академии наук.

Источник: http://www.GalacticNews.ru/astronomu/uchenye-astronomy-karl-fridrix-gauss/

Исторический очерк о великом математике Карле Фридрихе Гауссе

Математик и историк математики Джереми Грей рассказывает Гауссе и его огромном вкладе в науку, о теории квадратичных форм, открытии Цереры, и неевклидову геометрию*

Портрет Гаусса Эдуарда Ритмюллера на террасе обсерватории Геттингена // Карл Фридрих Гаусс: Титан науки Г. Уолдо Даннингтона, Джереми Грея, Фриц-Эгберт Дохе

Карл Фридрих Гаусс был немецким математиком и астрономом. Он родился у бедных родителей в Брауншвейге в 1777 году и скончался в Геттингене в Германии в 1855 году, и к тому времени все, кто его знал, считали его одним из величайших математиков всех времен.

Изучение Гаусса

Как мы изучаем Карла Фридриха Гаусса? Ну, когда дело доходит до его ранней жизни, мы должны полагаться на семейные истории, которыми поделилась его мать, когда он стал знаменитым.

Конечно, эти истории склонны к преувеличению, но его замечательный талант был заметен, уже когда Гаусс был в раннем подростковом возрасте. С тех пор у нас появляется все больше записей о его жизни.

Когда Гаусс вырос и стал замечен, у нас начали появляться письма о нем людьми, которые его знали, а также официальными отчетами разного рода. У нас также есть длинная биография его друга, написанная на основе бесед, которые они имели в конце жизни Гаусса.

У нас есть его публикации, у нас очень много его писем к другим людям, и много материала он написал, но так и не опубликовал. И, наконец, у нас есть некрологи.

Ранняя жизнь и путь к математике

Отец Гаусса занимался различными делами, был рабочим, мастером строительной площадки и купеческим ассистентом. Его мать была умной, но едва грамотной, и посвятила всю себя Гауссу до самой своей смерти в возрасте 97 лет.

Похоже, что Гаусс был замечен как одаренный ученик еще в школе, в одиннадцать лет, его отца убедили отправить его в местную академическую школу, вместо того, чтобы заставить его работать.

В то время Герцог Брауншвейгский стремился модернизировать своё герцогство, и привлекал талантливых людей, которые бы помогли ему в этом.

Когда Гауссу исполнилось пятнадцать, герцог привел его в коллегию Каролинум для получения им высшего образования, хотя к тому времени Гаусс уже самостоятельно изучил латынь и математику на уровне высшей школы. В возрасте восемнадцати лет он поступил в Геттингенский университет, а в двадцать один уже написал докторскую диссертацию.

Первоначально Гаусс собирался изучать филологию, приоритетный предмет в Германии того времени, но он также проводил обширные исследования по алгебраическому построению правильных многоугольников. В связи с тем, что вершины правильного многоугольника из N сторон задаются решением уравнения (что численно равно .

Гаусс обнаружил, что при n = 17 уравнение факторизуется таким образом, что правильный 17-сторонний многоугольник может быть построен только по линейке и циркуля. Это был совершенно новый результат, греческие геометры не подозревали об этом, и открытие вызвало небольшую сенсацию — новости об этом даже были опубликованы в городской газете.

Этот успех, который пришел, когда ему едва исполнилось девятнадцать, заставил его принять решение изучать математику.

Но то, что сделало его знаменитым, было два совершенно разных явления в 1801 году. Первым было издание его книги под названием «Арифметические рассуждения», которая полностью переписала теорию чисел и привела к тому, что она( теория чисел) стала, и до сих пор является, одним из центральных предметов математики.

Она включает в себя теорию уравнений вида x ^ n — 1, являющейся одновременно очень оригинальной и в то же время легко воспринимаемой, а также гораздо более сложную теорию, называемую теорией квадратичной формой.

Это уже привлекло внимание двух ведущих французских математиков, Джозефа Луи Лагранжа и Адриена Мари Лежандра, которые признали, что Гаусс ушел очень далеко за пределы всего того, что они делали.

Вторым важным событием было повторное открытие Гауссом первого известного астероида. Он был найден в 1800 году итальянским астрономом Джузеппе Пьяцци, который назвал его Церерой в честь римской богини земледелия.

Он наблюдал ее в течение 41 ночи, прежде чем она исчезла за солнцем. Это было очень захватывающее открытие, и астрономы очень хотели знать, где он появится снова.

Только Гаусс рассчитал это правильно, чего не сделал никто из профессионалов, и это сделало его имя как астронома, которым он и остался на многие годы вперед.

Поздняя жизнь и семья

Первая работа Гаусса была математиком в Геттингене, но после открытия Цереры, а затем и других астероидов он постепенно переключил свои интересы на астрономию, а в 1815 году стал директором Геттингенской обсерватории, и занимал эту должность почти до самой смерти.

Он также оставался профессором математики в Геттингенском университете, но это, похоже, не требовало от него большого преподавания, а записи о его контактах с молодыми поколениями была довольно незначительной.

Фактически, он, кажется, был отчужденной фигурой, более комфортной и общительной с астрономами, и немногими хорошими математиками в его жизни.

В 1820-х годах он руководил массированным исследованием северной Германии и южной Дании и в ходе этого переписывал теорию геометрии поверхностей или дифференциальную геометрию, как ее называют сегодня.

Гаусс женился дважды, в первый раз довольно счастливо, но когда его жена Джоанна умерла во время родов в 1809 году, он снова женился на Минне Вальдек, но этот брак оказался менее успешным; Она умерла в 1831 году.

У него было трое сыновей, двое из которых эмигрировали в Соединенные Штаты, скорее всего, потому что их отношения с отцом были проблемными. В результате в Штатах существует активная группа людей, которые ведут свое происхождение от Гаусса.

У него также было две дочери, по одной от каждого брака.

Величайший вклад в математику

Рассматривая вклад Гаусса в этой области, мы можем начать с метода наименьших квадратов в статистике, который он изобрел, чтобы понять данные Пьяцци и найти астероид Церера.

Это был прорыв в усреднении большого количества наблюдений, все из которых были немного не точными, чтобы получить из них наиболее достоверную информацию.

Что касается теории чисел, говорить об этом можно очень долго, но он сделал замечательные открытия о том, какие числа могут быть выражены квадратичными формами, которые являются выражениями вида .

Вам может казаться, что это важно, но Гаусс превратил то, что было собранием разрозненных результатов в систематическую теорию, и показал, что многие простые и естественные гипотезы имеют доказательства, которые лежат в том, что похоже на другие разделы математики вообще. Некоторые приемы, которые он изобрел, оказались важными и в других областях математики, но Гаусс обнаружил их еще до того, как эти ветви были правильно изучены: теория групп — пример.

Его работа по уравнениям вида и, что более удивительно, по глубоким особенностям теории квадратичных форм, открыла использование комплексных чисел, например, для доказательства результатов о целых числах. Это говорит о том, что многое происходило под поверхностью предмета.

Позже, в 1820-х годах, он обнаружил, что существует концепция кривизны поверхности, которая является неотъемлемой частью поверхности.

Это объясняет, почему некоторые поверхности не могут быть точно скопированы на другие, без преобразований, как мы не можем сделать точную карту Земли на листе бумаги.

Это освободило изучение поверхностей от изучения твердых тел: у вас может быть яблочная кожура, без необходимости представления яблока под ней.

Поверхность с отрицательной кривизной, где сумма углов треугольника меньше, чем у треугольника на плоскости //source:Wikipedia

В 1840-х годах, независимо от английского математика Джорджа Грина, он изобрел предмет теории потенциала, который является огромным расширением исчисления функций нескольких переменных. Это правильная математика для изучения гравитации и электромагнетизма и с тех пор используется во многих областях прикладной математики.

И мы также должны помнить, что Гаусс открыл, но не опубликовал довольно много. Никто не знает, почему он так много сделал для себя, но одна теория состоит в том, что поток новых идей, которые он держал в голове был еще более захватывающим.

Он убедил себя в том, что геометрия Евклида не обязательно истинна и что по крайней мере одна другая геометрия логически возможна. Слава этому открытию досталась двум другим математикам, Бойяю в Румынии-Венгрии и Лобачевскому в России, но только после их смерти — настолько это было спорно в то время.

И он много работал над так называемыми эллиптическими функциями — вы можете рассматривать их как обобщения синусоидальных и косинусных функций тригонометрии, но, если более точно, они являются сложными функциями комплексной переменной, а Гаусс изобрел целую теорию из них.

Десять лет спустя Абель и Якоби прославились тем, что сделали то же самое, не зная, что это уже сделал Гаусс.

Работа в других областях

После своего повторного открытия первого астероида, Гаусс много работал над поиском других астероидов и вычислением их орбит. Это была трудная работа в докомпьютерную эпоху, но он обратился к своим талантам, и он, похоже, почувствовал, что это работа позволила ему выплатить свой долг принцу и обществу, которое дало ему образование.

Кроме того, во время съемки в северной Германии он изобрел гелиотроп для точной съемки, а в 1840-х годах он помог создать и построить первый электрический телеграф. Если бы он также подумал об усилителях, он мог бы отметиться и в этом, так как без них сигналы не могли путешествовать очень далеко.

Прочное Наследие

Есть много причин, почему Карл Фридрих Гаусс по-прежнему так актуален сегодня. Прежде всего, теория чисел превратилась в огромный предмет с репутацией очень сложного.

С тех пор некоторые из лучших математиков тяготеют к нему, и Гаусс дал им способ приблизиться к нему. Естественно, некоторые проблемы, которые он не смог решить, привлекли к себе внимание, поэтому вы можете сказать, что он создал целую область исследований.

Оказывается, у этого также есть глубокие связи с теорией эллиптических функций.

Кроме того, его открытие внутренней концепции кривизны обогатило все изучение поверхностей и вдохновило на многие годы работы последующие поколения. Любой, кто изучает поверхности, от предприимчивых современных архитекторов до математиков, находится у него в долгу.

Внутренняя геометрия поверхностей простирается до идеи внутренней геометрии объектов более высокого порядка, таких как трехмерное пространство и четырехмерное пространство-время.

Общая теория относительности Эйнштейна и вся современная космология, в том числе изучение черных дыр, стали возможными благодаря тому, что Гаусс совершил этот прорыв.

Идея неевклидовой геометрии, столь шокировавшая в свое время, заставляла людей осознавать, что может быть много видов строгой математики, некоторые из которых могут быть более точными или полезными — или просто интересными -, чем те, о которых мы знали.

Неевклидова геометрия // источник: Numberphile

Человек за легендой

Жизнь Гаусса породила много историй и анекдотов. Например, как ни невероятно, его мать любила говорить, что никто не преподавал основы арифметики Гауссу, но он сам справился с ней, слушая своего отца на работе.

Несомненно, он был одним из немногих математиков с необычайной способностью к умственной арифметике и мог быстро и аккуратно проводить длинные вычисления в уме.

Также сообщалось, что его сыновья говорили, что он отговаривал их от продолжения карьеры в науке, потому что «он не хотел, чтобы имя Гаусса ассоциировалось со второсортной работой».

В том же духе у него была пугающая привычка говорить людям, что он уже знал то, что они только что обнаружили.

Наиболее известный случай, когда его старый университетский друг Фаркаш Бойаи написал ему, приложив копию открытия своего сына Яноса неевклидовой геометрии, Гаусс ответил, что он не может похвалить работу, заявив — «потому, что делать это все равно, что хвалить себя».

Это не только преувеличивало то, что знал Гаусс в 1831 году, он и не сделал ничего, чтобы помочь молодому Бойи получить признание за его работу, и Янош настолько разочаровался, что больше никогда не публиковал его.

Однако у вас не должно создаться впечатления, что Гаусс был неприятным человеком.

Он был принципиальным человеком, он был счастлив принять Софи Жермен как серьезного математика в то время, когда женщины были исключены из высшего образования, и он всегда стремился использовать свои таланты для продуктивного использования. Но его исключительные таланты, и, хотя мы можем только порадоваться за них, Радакторвероятно, сделали его очень одиноким.

Джереми Грей, доктор, заслуженный пр.фессор истории математики, Открытый университет.

→ Оригинал статьи

* Неточный перевод.

Источник: https://habr.com/post/332966/

Гаусс, Карл Фридрих

(1777-1855) немецкий математик и астроном

Карл Фридрих Гаусс родился 30 апреля 1777 года в Германии, в городе Брауншвейге, в семье ремесленника.

Отец, Герхард Дидерих Гаусс, имел много различных профессий, поскольку из-за нехватки денег ему приходилось заниматься всем, начиная от устройства фонтанов и кончая садоводством.

Мать Карла, Доротея, была также из простой семьи каменотесов. Ее отличал веселый характер, она была женщина умная, веселая и решительная, любила своего единственного сына и гордилась им.

В детстве Гаусс очень рано научился считать. Однажды летом отец взял трехлетнего Карла на работу в каменоломню. Когда рабочие закончили работу, Герхард, отец Карла, стал производить расчеты с каждым работником.

После утомительных расчетов, где учитывалось количество часов, выработка, условия работы и т.п., отец зачитал ведомость, из которой следовало, кому сколько причитается. И вдруг маленький Карл произнес, что счет неверен, что имеется ошибка. Проверили, и мальчик оказался прав.

Стали говорить, что маленький Гаусс научился считать раньше, чем говорить.

Когда Карлу исполнилось 7 лет, его определили в Екатерининскую школу, которой заведовал Бюттнер. Он сразу обратил внимание на мальчика, который быстрее всех решал примеры. В школе Гаусс познакомился и подружился с молодым человеком, помощником Бюттнера, которого звали Иоганн Мартин Христиан Бартельс.

Вместе с Бартельсом 10-летний Гаусс занялся математическим преобразованием, изучением классических трудов. Благодаря Бартельсу на юное дарование обратили внимание герцог Карл Вильгельм Фердинанд и знатные особы Брауншвейга.

Иоганн Мартин Христиан Бартельс в дальнейшем учился в Гельмштедтском и Гёттингенском университетах, а впоследствии приехал в Россию и был профессором Казанского университета, его лекции слушал Николай Иванович Лобачевский.

Тем временем Карл Гаусс в 1788 году поступил учиться в Екатерининскую гимназию.

Бедный мальчик никогда бы не смог учиться в гимназии, а потом и в университете без помощи и покровительства герцога Брауншвейгского, которому Гаусс был предан и благодарен в течение всей жизни.

Герцог всегда помнил о застенчивом юноше необыкновенных способностей. Карл Вильгельм Фердинанд отпустил необходимые средства для продолжения образования юноши уже в Каролинской Коллегии, которая готовила к поступлению в университет.

В 1795 году Карл Гаусс поступил учиться в Гёттингенс-кий университет. Среди университетских друзей молодого математика был Фаркаш Бойяи, отец Яноша Бойяи, великого венгерского математика. В 1798 году он закончил университет и возвратился на родину.

В родном Брауншвейге в течение десяти лет Гаусс переживает своеобразную «болдинскую осень» — период кипучего творчества и великих открытий. Область математики, где он работает, называется «три великих А»: арифметика, алгебра и анализ.

Началось все с искусства счета. Гаусс считает постоянно, он проводит вычисления с десятичными числами с невероятным количеством знаков после запятой. В течение жизни он становится виртуозом в численных расчетах.

Гаусс накапливает информацию о различных суммах чисел, расчетах бесконечных рядов. Это похоже на игру, где гений ученого приходит к гипотезам и открытиям.

Он подобен гениальному старателю, чувствует, когда его кирка попадет в золотой самородок.

Гаусс составляет таблицы обратных величин. Он решил проследить, как изменяется период десятичной дроби в зависимости от натурального числа р.

Он доказал, что правильный семнадцатиугольник может быть построен с помощью циркуля и линейки, т.е. что уравнение:

или уравнение

разрешимо в квадратичных радикалах.

Он дал полное решение задачи построения правильных семиугольников и девятиугольников. Ученые трудились над этой задачей 2000 лет.

Гаусс начинает вести дневник. Читая его, мы видим, как начинает разворачиваться завораживающее математическое действо, рождается шедевр ученого, его «Арифметические исследования».

Он доказал основную теорему алгебры, в теории чисел доказал закон взаимности, который был открыт великим Леонардом Эйлером, но тот не смог его доказать.

Карл Гаусс занимается в геометрии теорией поверхностей, из которой следует, что геометрия строится на любой поверхности, а не только на плоскости, как в планиметрии Евклида или сферической геометрии.

Ему удалось построить на поверхности линии, которые играют роль прямых, удалось измерять расстояния на поверхности.

Прикладная астрономия прочно входит в сферу его научных интересов. Это экспериментально-математическая работа, состоящая из наблюдений, исследований экспериментальных точек, математических методов обработки результатов наблюдений, численных расчетов. Известен интерес Гаусса к практической астрономии, а утомительные вычисления он никому не доверял.

Славу самого знаменитого астронома Европы ему принесло открытие малой планеты Цереры. А дело было так. Сначала Д. Пиацци открыл малую планету и назвал ее Церерой. Но определить ее точное местоположение ему не удалось, поскольку небесное тело скрылось за плотными облаками.

Гаусс же «на кончике пера», за письменным столом вновь открыл Цереру. Он рассчитал орбиту малой планеты и в письме к Пиацци указал, где и когда можно наблюдать Цереру. Когда астрономы направили свои телескопы в указанную точку, они увидели Цереру, которая вновь появилась.

Их изумлению не было конца.

Молодого ученого прочат в директора Гёттингенской обсерватории. О нем писали следующее: «Слава Гаусса вполне заслужена, и молодой 25-летний человек идет уже впереди всех современных математиков…».

22 ноября 1804 года Карл Гаусс женился на Иоанне Ост-гоф из Брауншвейга. Он писал своему другу Бойяи: «Жизнь представляется мне вечной весной со всеми новыми яркими цветами». Он счастлив, но это длится недолго.

Через пять лет Иоанна умирает после рождения третьего ребенка, сына Луи, который, в свою очередь, прожил недолго, всего полгода. Карл Гаусс остается один с двумя детьми — сыном Иосифом и дочерью Минной. А следом произошло другое несчастье: внезапно умирает герцог Брауншвейгский, влиятельный друг и покровитель.

Герцог умер от ран, полученных в боевых сражениях, причем им проигранных, при Ауерштедте и Иене.

Тем временем ученого приглашает Гёттингенский университет. Тридцатилетний Гаусс получает кафедру математики и астрономии, а затем и должность директора Гёттингенской астрономической обсерватории, которую занимал до конца жизни.

4 августа 1810 года он женился на любимой подруге своей покойной жены, дочери гёттингенского советника Валь-дека. Звали ее Минной, она родила Гауссу дочь и двух сыновей. В домашней обстановке Карл был строгим, не терпящим никаких нововведений консерватором. Он обладал железным характером, а выдающиеся способности и гениальность сочетались в нем с истинно детской скромностью.

Был он глубоко религиозен, твердо верил в загробную жизнь. Обстановка его маленького кабинета в течение всей жизни ученого говорила о непритязательных вкусах его хозяина: небольшой рабочий стол, конторка, выкрашенная белой масляной краской, узкая софа и единственное кресло. Тускло горит свеча, в комнате весьма умеренная температура.

Это обитель «короля математиков», как называли Гаусса, «гёттингенского колосса».

В творческой личности ученого очень сильна гуманитарная составляющая: он интересуется языками, историей, философией и политикой. Он выучил русский язык, в письмах друзьям в Петербург просил прислать ему книги и журналы на русском языке и даже «Капитанскую дочку» Пушкина.

Карлу Гауссу предлагают занять кресло в Берлинской академии наук, но его так захлестнула личная жизнь, ее проблемы (ведь только что состоялась помолвка с его второй женой), что он отказался от заманчивого предложения.

Уже после непродолжительного пребывания в Гёттингене у Гаусса образовался круг учеников, они боготворили своего учителя, преклонялись перед ним и впоследствии сами стали знаменитыми учеными. Это Шумахер, Герлин, Николаи, Мёбиус, Струве и Энке.

Дружба возникла на ниве прикладной астрономии. Все они становятся директорами обсерваторий.

Работа Карла Гаусса в университете, конечно, была связана с преподаванием. Как ни странно, отношение его к этой деятельности весьма и весьма негативное.

Он считал, что это потеря времени, которое отнимается от научной работы, от исследований. Однако при этом все отмечали высокое качество его лекций и их научную ценность.

А так как по своей натуре Карл Гаусс был человеком добрым, отзывчивым и внимательным, то студенты платили ему почтением и любовью.

Исследования по диоптрике и практическая астрономия привели его к практическим приложениям, в частности, к тому, как усовершенствовать телескоп. Он провел необходимые расчеты, но никто не обратил на них внимания. Прошло полстолетия, и Штейнгель воспользовался расчетами и формулами Гаусса и создал улучшенную конструкцию телескопа.

В 1816 году была построена новая обсерватория, и Гаусс переехал в новую квартиру как директор Гёттингенской обсерватории. Теперь у руководителя важные заботы — нужно заменить инструменты, которые давно морально устарели, особенно телескопы.

Гаусс заказывает знаменитым мастерам Рейхенбаху, Фрауенгоферу, Утцшнейдеру и Эртелю два новых меридианных инструмента, которые были готовы в 1819 и 1821 годах.

Гёттингенская обсерватория под руководством Гаусса начинает производить самые точные измерения.

Ученый изобрел гелиотрон. Это несложный и дешевый прибор, состоящий из зрительной трубы и двух плоских зеркал, поставленных нормально. Говорят, что все гениальное просто, это касается и гелиотрона. Прибор оказался совершенно необходимым при геодезических измерениях.

Гаусс рассчитывает влияние силы тяжести на поверхности планет. Оказывается, что на Солнце могут жить только существа очень маленького роста, так как сила тяжести там в 28 раз превышает земную.

В физике он интересуется магнетизмом и электричеством. В 1833 году был продемонстрирован электромагнитный телеграф, изобретенный им. Это был прообраз современного телеграфа.

Проводник, по которому шел сигнал, был выполнен из железа толщиной в 2 или 3 миллиметра. На этом первом телеграфе сначала передавались отдельные слова, а потом и целые фразы. Общественный интерес к электромагнитному телеграфу Гаусса был весьма велик.

Герцог Кембриджский специально приезжал в Гёттинген, чтобы познакомиться с ним.

«Если бы были деньги, — писал Гаусс Шумахеру, — то электромагнитная телеграфия могла бы быть приведена к такому совершенству и к таким размерам, перед которыми фантазия просто приходит в ужас».

После успешных опытов в Гёттингене саксонский государственный министр Линденау предложил лейпцигскому профессору Эрнсту Генриху Веберу, который вместе с Гауссом продемонстрировал телеграф, представить доклад об «устройстве электромагнитного телеграфа между Дрезденом и Лейпцигом».

В докладе Эрнста Генриха Вебера прозвучали пророческие слова: «…если когда-нибудь земля покроется сетью железных дорог с телеграфными линиями, то это будет напоминать нервную систему в человеческом теле…».

Вебер принял активное участие в проекте, внес много усовершенствований, и первый телеграф Гаусса-Вебера просуществовал десять лет, пока 16 декабря 1845 года после сильной молнии не сгорела большая часть его проволочной линии. Оставшийся кусок провода стал музейным экспонатом и хранится в Гёттингене.

Гаусс и Вебер провели знаменитые эксперименты в области магнитных и электрических единиц, измерения магнитных полей. Результаты их исследований легли в основу теории потенциала, в основу современной теории ошибок.

Когда Гаусс занимался кристаллографией, он изобрел приспособление, с помощью которого можно было с высокой точностью измерять 12-дюймовым рейхенбаховским теодолитом углы кристалла, при этом он изобрел новый способ обозначения кристаллов.

Интересна страница его наследия, связанная с основаниями геометрии. Говорили, что великий Гаусс занимался теорией параллельных прямых и пришел к новой, совершенно другой геометрии. Постепенно вокруг него образовалась группа математиков, которые обменивались идеями в этой области.

Началось все с того, что молодой Гаусс, так же как и другие математики, пытался доказать теорему о параллельных исходя из аксиом. Отвергнув все псевдодоказательства, он понял, что на этом пути ничего создать не удастся. Неевклидова гипотеза его испугала.

Публиковать эти мысли нельзя — ученого предали бы анафеме. Но мысль остановить нельзя, и гауссова неевклидова геометрия — вот она перед нами, в дневниках.

Это его тайна, скрытая от широкой публики, но известная его ближайшим друзьям, так как у математиков существует традиция переписки, традиция обмениваться мыслями и идеями.

Фаркаш Бойяи, профессор математики, друг Гаусса, воспитывая сына Яноша, талантливого математика, уговаривал его не заниматься в геометрии теорией параллельных, говорил, что эта тема проклята в математике и, кроме несчастия, она ничего не принесет. И то, чего не сказал Карл Гаусс, сказали в дальнейшем Лобачевский и Бойяи. Поэтому абсолютная неевклидова геометрия названа их именами.

С годами у Гаусса исчезает нерасположенность к педагогической деятельности, к чтению лекций. К этому времени его окружают ученики и друзья. 16 июля 1849 года в Гёттингене праздновали пятидесятилетний юбилей получения Гауссом докторской степени. Собрались многочисленные ученики и почитатели, коллеги и друзья.

Ему вручили дипломы почетного гражданина Гёттингена и Брауншвейга, ордена различных государств. Состоялся торжественный обед, на котором он сказал, что в Гёттингене существуют все условия для развития таланта, здесь помогают и в житейских трудностях, и в науке, и еще, что «…

банальные фразы никогда не имели силы в Гёттингене».

Карл Гаусс постарел. Теперь он работает менее интенсивно, но круг его занятий по-прежнему широк: сходимость рядов, практическая астрономия, физика.

Зима 1852 года была для него очень тяжелой, резко ухудшается его здоровье. Он никогда не обращался к врачам, так как ие доверял медицинской науке. Его друг, профессор Баум, осмотрел ученого и сказал, что положение очень тяжелое и это связано с сердечной недостаточностью. Здоровье великого математика неуклонно ухудшается, он перестает ходить и 23 февраля 1855 года умирает.

Современники Карла Гаусса чувствовали превосходство гения. На медали, отчеканенной в 1855 году, выгравировано: Mathematicorum princeps (Принцепс математиков). В астрономии память о нем осталась в названии одной из фундаментальных постоянных, система единиц, теорема, принцип, формулы — все это носит имя Карла Гаусса.

Источник: http://biografiivsem.ru/gauss-karl-fridrih

Ссылка на основную публикацию