Большой разрыв – все о космосе

Новости и исследования в медицине: новые технологии, методы лечения, профилактики и реабилитации

  • 31 Июля в 23:35 17Виртуальная реальность в ортопедической хирургии: тренировочная программа для врачей и медсестерИнститут Johnson & Johnson (США) запустил тренировочную программу виртуальной реальности в ортопедической хирургии для подготовки врачей и медсестер.Ортопедия и ревматология
  • 31 Июля в 23:30 16Лекарства, которые могут вызвать депрессиюПомимо других побочных явлений, лекарства могут вызывать депрессию и негативно влиять на качество вашей жизни: какие это препараты?Медицина
  • 28 Июля в 9:35 216Металлические щетки для гриля опасны!Американская медицинская ассоциация (AMA) призывает проявлять осторожность при использовании металлических щеток для чистки гриля. Эти приспособления могут стать источником опасных металлических фрагментов, попадающих в пищеварительный тракт.Разное
  • 30 Июля в 23:35 338Новые лекарства от рака простаты станут доступнейУченые из Австралии сумели вырастить лабораторные клетки для испытания новых препаратов – эта технология может многократно ускорить создание лекарств от рака простаты и сделать их доступней.Онкология
  • 30 Июля в 23:30 225Скачки сахара в крови: как предотвратить диабет?Некоторые продукты могут вызвать резкие скачки сахара в крови у здоровых людей  – ученые советуют следить за ними, чтобы предотвратить диабет и его осложнения.Сахарный диабет
  • 29 Июля в 23:40 852Лекарство от всех хронических воспалительных заболеванийУченые из США обнаружили загадочный энзим, который расширит возможности лечения хронических воспалительных заболеваний любой этиологии.Наука и технологии
  • 29 Июля в 23:35 929Польза черники: результаты исследованийПольза черники для здоровья известна с незапамятных времен: сегодня благотворное влияние ягод на сосуды и обмен веществ подтверждаются научными исследованиями.Питание и диеты
  • 26 Июля в 23:30 1810Новый метод лечения морщин и облысенияМечта человечества сохранить физическую молодость привела американских ученых к созданию нового метода лечения морщин и облысения.Наука и технологии
  • 26 Июля в 1:10 1848Нитраты в питьевой воде вызывают рак кишечникаСпособность нитратов в питьевой воде и почве вызывать рак кишечника беспокоит жителей экологически неблагополучных регионов.Онкология
  • 26 Июля в 1:00 1876Прокальцитонин и респираторные инфекцииПолипептид прокальцитонин — это биомаркер, используемый для диагностики инфекционно-воспалительных заболеваний.Медицина
  • 25 Июля в 1:00 1559Здоровое сердце и сосуды после 40 лет: чем питаться и чего избегать?После 40 лет большинство задумывается о здоровье сердца и сосудов: как правильно питаться, какие продукты лучше ограничить? Полезен ли кофе? Повышают ли молочные продукты холестерин? Нужны ли омега-3?Сердце и сосуды
  • 24 Июля в 1:15 16705 причин употреблять больше магнияБольшинству не нужно искать причины употреблять больше магния — современным людям хронически не хватает этого элемента.Питание и диеты

Источник: http://medbe.ru/news/interesnoe/big-rip-trevozhnaya-kosmologicheskaya-gipoteza-o-sudbe-kosmosa/

10 теорий о том, каким будет конец нашей Вселенной • Фактрум

О Вселенной мы знаем пока очень мало. На самом деле, почти ничего. Но поскольку люди задумываются о том, что происходит после их смерти, смерть целой Вселенной интересует нас не меньше. За последние годы научное сообщество выдвинуло множество теорий — вы удивитесь, узнав, насколько сильно они отличаются друг от друга. Правды, само собой, не может знать никто.

1. Большое сжатие

Самая знаменитая теория о рождении Вселенной — это теория Большого взрыва. Она гласит, что вся материя изначально существовала как сингулярность — бесконечно плотная точка посреди великого ничто. А потом по непонятным причинам произошёл взрыв. Материя вырвалась наружу с невероятной скоростью и постепенно стала известной нам Вселенной.

Как вы могли догадаться, Большое сжатие — это Большой взрыв «наоборот».

Вселенная постепенно расширяется под воздействием собственной гравитации, но этому должен быть предел — некая конечная точка, граница.

Когда Вселенная достигнет этой границы, то прекратит расширяться и начнёт сжиматься. Тогда вся материя (планеты, звёзды, галактики, чёрные дыры -всё) снова сожмётся в одну бесконечно плотную точку.

Правда, последние данные этой теории противоречивы — учёные недавно обнаружили, что Вселенная расширяется всё быстрее.

2. Тепловая смерть Вселенной

В общем и целом Тепловая смерть — противоположность Большому сжатию. Согласно теории, гравитация способствует тому, что Вселенная продолжит расширяться в геометрической прогрессии. Галактики будут отдаляться от друга всё дальше и дальше, подобно несчастным любовникам, и всеобъемлющая чёрная пропасть между ними будет расти.

Вселенная следует тем же правилам, что и любая термодинамическая система: тепло равномерно распределяется по всему, что в ней есть. Всё вещество Вселенной равномерно распределено среди холодного, скучного и тёмного «тумана».

В конце концов все звёзды, одна за другой, вспыхнут и погаснут, а энергии для появления новых звёзд уже не будет — вселенная погаснет. Материя всё ещё останется на месте, но в форме частиц, чьё движение будет полностью хаотичным. Эти частицы будут сталкиваться друг с другом, но без обмена энергией. А люди? Люди тоже станут всего-навсего частицами посреди бескрайней пустоты.

3. Тепловая смерть плюс чёрные дыры

Согласно популярной теории, вся материя во Вселенной движется вокруг чёрных дыр: в центре почти всех известных нам галактик есть сверхмассивные чёрные дыры. Это может означать, что звёзды и даже целые галактики в итоге будут уничтожены, как только попадут в горизонт событий.

Когда-нибудь эти чёрные дыры поглотят большую часть материи, и мы останемся один на один с тёмной Вселенной. Время от времени здесь будут появляться вспышки света — это будет означать, что какой-то объект оказался достаточно близко к чёрной дыре, чтобы выделить энергию. Затем снова станет темно.

Потом более массивные чёрные дыры поглотят менее массивные и станут таким образом ещё больше. Но это ещё не конец Вселенной: чёрные дыры со временем испаряются (теряют свою массу), так как излучают то, что в современной науке получило название излучение Хокинга. И когда умрёт последняя чёрная дыра, во Вселенной останутся только равномерно распределённые частицы с излучением Хокинга.

4. Конец времени

Если и есть в этом мире хоть что-то вечное, то это, безусловно, время.

Независимо от того, будет ли существовать Вселенная, время-то уж точно никуда не исчезнет — без него просто не было бы никакой возможности отличить предыдущий момент от последующего.

Но что если время просто застынет? Что если того, что мы понимаем под моментами, вообще не будет? Всё застынет в одном и том же бесконечном мгновении — навсегда.

Предположим, мы живём в бесконечной Вселенной с бесконечным временем. Это значит, что всё, что может случиться, обязательно произойдёт со стопроцентной вероятностью. Такой же парадокс возникает, если вы живёте вечно.

Представьте, что время вашей жизни неограниченно, поэтому всё, что только может произойти с вами, тоже обязательно произойдёт, причём бесконечное количество раз. Таким образом, если вы живёте вечно, то шанс ненадолго выбыть из строя составляет 100%, и вы потратите вечность в темноте космоса.

На основании этого учёные сделали предположение: время, в конце концов, остановится.

Если бы вы могли жить вечно, чтобы испытать всё это (через миллиарды лет после гибели Земли), вы бы даже никогда и не поняли, что-то пошло не так.

Время просто остановится, и, по мнению учёных, всё застынет в одном мгновении, как на фотографии — навсегда. Будет просто одно и то же мгновение. Вы бы никогда не умерли, никогда бы не состарились.

Это было бы своего рода псевдобессмертие. Но вы бы никогда об этом не узнали.

5. Большой отскок

Большой отскок похож на Большое сжатие, но куда более оптимистичное. Сценарий тот же: под воздействием гравитации расширение Вселенной замедляется, и в итоге вся материя собирается в одной точке.

Согласно этой теории, силы быстрого сжатия будет достаточно, чтобы случился новый Большой взрыв — и тогда появится новая, юная Вселенная.

Согласно этой модели, ничто не погибнет — материя просто «перераспределится».

Но физикам и физике такое объяснение не нравится. Поэтому некоторые учёные утверждают, что, возможно, Вселенная не пройдёт весь путь обратно к сингулярности. Вместо этого она приблизится к этому состоянию максимально близко, а потом «отскочит» с помощью силы, подобной той, какая возникает, когда мяч отскакивает от пола.

Большой отскок очень похож на Большой взрыв — теоретически появится новая Вселенная. Таким образом, наша с вами Вселенная может быть не первой, а, скажем, 400 по счёту. Но нет никакого способа это доказать — как и опровергнуть.

6. Большой разрыв

Независимо от того, как именно погибнет Вселенная, учёные не стесняются для названия новой теории использовать слово «Большой». Это, кстати, ещё слабо сказано. Согласно теории Большого разрыва, невидимая сила под названием тёмная энергия заставит Вселенную расширяться быстрее. В итоге она так разгонится, что просто разорвётся на части.

Большинство теорий говорят, что Вселенная погибнет ещё очень нескоро. Но теория Большого разрыва сулит ей относительно скорую смерть — по предварительным оценкам это случится через 16 млрд лет.

Планеты и, возможно, жизнь ещё будут существовать. И этот вселенский катаклизм может разом всё погубить: разорвать всё на части или скормить космическим львам, живущим между вселенными. О том, что произойдёт, можно только догадываться. Но такой конец будет куда страшнее, чем медленная тепловая смерть.

7. Метастабильность вакуума

Теория основана на идее, что Вселенная постоянно находится в нестабильном состоянии — квантовая физика вообще говорит, что она балансирует на грани устойчивости. Некоторые учёные полагают, что через миллиарды лет Вселенная шагнёт за эту грань.

Когда это произойдёт, появится своего рода «пузырь». Думайте о нём, как об альтернативной Вселенной (хотя фактически это будет та же самая Вселенная с другими свойствами). Пузырь начнёт расширяться во всех направлениях со скоростью света и уничтожать всё, с чем соприкоснётся. И в итоге уничтожит всё.

Но не волнуйтесь: Вселенная при этом всё ещё будет существовать. Только законы физики в ней будут совершенно другими, но там тоже вполне может возникнуть жизнь. Только там не будет ничего, что мы, люди, будем в состоянии понять.

8. Временной барьер

Если мы попробуем рассчитать, какова вероятность существования мультивселенной, в которой есть бесконечное число вселенных, но немного (или совершенно) разных, то столкнёмся с той же проблемой, что и в теории о Конце времени: всё, что может случиться, обязательно случится.

Чтобы обойти эту проблему, учёные берут отдельный участок Вселенной и вычисляют вероятность его существования. Расчёты кажутся логичными, но делят Вселенную на отдельные куски — как торт. И у каждого куска есть граница, как у областей на политической карте мира. Только надо представить, что каждую страну разделяет устремляющая в небо стена.

Эта модель может существовать только в том случае, если границы — настоящие, физические, за пределы которых ничто не может выйти. Согласно расчётам, в ближайшие 3,7 млрд лет мы пересечём этот временной барьер, и для нас вселенная закончится.

Это в общих чертах — понимания физики, чтобы описать теорию более детально, у нас не хватает. У физиков, правда, тоже. Но перспектива кажется жутковатой.

9. Конца Вселенной не будет! (…мы же живём в мультивселенной, да?)

В мультивселенной бесконечные вселенные могут возникать в пределах всего существующего или за его пределами. Вселенные могут начинаться с Большого взрыва. Наша может закончиться Большим сжатием или Большим разрывом, или вообще Большим пинком (такую теорию ещё не придумали, так что если у вас есть знакомые физики, можете подкинуть им идею).

Но это не имеет значения: в мультивселенной наша Вселенная — не уникальный случай, она просто одна из многих. И хотя она может погибнуть, с мультивселенной при этом ничего особенного не случится. А значит, конца не будет.

Несмотря на то, что даже само время в других вселенных может быть совершенно другим и вести себя по-другому, новые вселенные в мультивселенной появляются всё время (извините за каламбур). Согласно физике, новых вселенных всегда будет больше, чем старых, так что в теории число вселенных постоянно растёт.

10. Вечная Вселенная

То, что Вселенная всегда была и всегда будет — одна из первых разработанных людьми концепций о её природе. Но есть и нечто посерьёзнее.

Можно предположить, что Большой взрыв был началом времени. Но возможно и то, что время существовало до него, а сингулярность и взрыв могли появиться из-за столкновения двух бран — листообразных структур пространства, формирующихся на более высоком уровне существования. Согласно этой модели, Вселенная циклична и всегда будет расширяться и сжиматься.

Теоретически мы может узнать это наверняка в ближайшие 20 лет. У учёных есть спутник «Планк» специально для наблюдений за Вселенной. Конечно, это нелегко, но учёные всё же могут понять, с чего началась наша Вселенная и чем она закончится. Теоретически, опять же.

Источник: https://www.factroom.ru/facts/51429

Big Rip – Большой разрыв

Big Rip – Большой разрыв

Десяток лет назад в космологии доминировали две модели эволюции космоса, основанные на общей теории относительности (ОТО). В открытой модели Вселенная расширяется вечно, но скорость ее расширения монотонно сокращается и стремится к положительному пределу. В закрытой модели расширение сменяется сжатием.

Читайте также:  Сколько времени занимает полет до венеры - все о космосе

Все зависит от того, будет ли в начале процесса расширения средняя плотность энергии космической материи больше или меньше некого критического значения.

Астрономические данные привели ученых к выводу, что в сумме средняя энергетическая плотность всех известных видов вещества и излучения и гипотетической темной материи составляет всего 30% от критического показателя.

Однако в 1998 году наблюдения за очень далекими сверхновыми привели астрономов к выводу, что скорость расширения Вселенной не падает, а, наоборот, возрастает! Такая возможность раньше рассматривалась лишь чисто теоретически. Сейчас принято считать, что отношение полной плотности энергии к критическому значению лишь чуть-чуть меньше единицы.

Для подсчета этой полной плотности надо добавить еще одно слагаемое, энергию вакуума (ее также называют темной энергией). Эта энергия противостоит силе тяготения и, следовательно, вызывает расширение пространства.

По последним данным, она не играла существенной роли в течение первой половины жизни Вселенной, но около шести миллиардов лет назад по непонятной причине включилась в работу.

Чтобы вакуум действовал как антигравитатор, плотность его энергии должна быть положительной. Наблюдение за дальними сверхновыми показало, что Вселенная ускоряет свое расширение очень медленно.

Это означает, что плотность энергии вакуума все же достаточно мала. Если такая ситуация сохранится и в будущем, то Вселенная до скончания времени будет расширяться с очень плавным ускорением.

Этот сценарий (с темной энергией или без нее) называют Большой заморозкой (Big Freeze).

Но есть и альтернатива – если темная энергия наберет силу, темпы расширения резко возрастут и Вселенная буквально взорвется, причем за сравнительно короткое время. Этот вариант называется Большим разрывом (Big Rip).

Холодные похороны

Наиболее подробно «морозильный» сценарий разработали американские физики Фред Адамс и Грегори Лафлин как раз накануне открытия ускоренного расширения Вселенной – в 1997 году. Они выполняли свои вычисления на базе стандартной открытой модели без учета энергии вакуума. Согласно их модели, история нашей Вселенной насчитывает четыре эры.

Звездная эра началась через сотню миллионов лет после Большого взрыва.

Во Вселенной стали возникать первые звезды и началась интенсивная генерация энергии за счет термоядерного синтеза в звездных недрах. Эти процессы продолжаются и сейчас, но Адамс и Лафлин вычислили, что звездообразование закончится, когда Вселенной исполнится 1014 лет.

К этому времени в космическом пространстве больше не останется свободного водорода, способного стягиваться гравитацией в газо-пылевые облака, дающие начало новым звездам.

Тогда же прекратятся и ядерные реакции в самых легких (0,08–0,3 массы Солнца) и потому долгоживущих звездах, красных карликах. Все прочие светила еще раньше исчерпают термоядерное топливо.

Звезды с массой до 8–12 солнечных масс закончат свое существование остывающими белыми карликами, на месте более тяжелых светил (до 25–30 масс Солнца) возникнут нейтронные звезды, а звезды-сверхгиганты дадут начало черным дырам. Звездная эра закончится.

Эра вырождения охватывает промежуток 1015–1037 лет

От сверкавших некогда термоядерных светил остались нейтронные звезды и белые карлики. Есть еще «несостоявшиеся» звезды – коричневые карлики, водородные тела с массой от 10 до 80 масс Юпитера (0,01–0,08 массы Солнца).

Они слишком легки для поджога термоядерной реакции, но нагревают свою поверхность до шести-семи сотен градусов за счет гравитационного сжатия. Наличествуют также планеты, планетоиды и прочая космическая мелочь. И конечно, копятся черные дыры.

Дыры-супергиганты, которые в звездную эру сформировались в активных ядрах большинства галактик, продолжают глотать вещество и увеличивать размеры и массу. К ним добавляются дыры звездных масштабов, наследницы самых массивных светил. Случается, что дыры сливаются друг с другом и с нейтронными звездами и еще больше распухают.

Далее прогноз становится менее определенным. Как известно, свободные нейтроны быстро распадаются на протоны, электроны и антинейтрино (бета-распад), а потому выживают либо в составе атомных ядер, либо внутри сверхплотных нейтронных звезд. Протоны тоже не вечны, так сегодня считают большинство физиков.

Период их полураспада пока точно не определен, но, по оценкам, он превышает 1032 лет. Адамс и Лафлин заложили в свою модель куда большее значение – 1037 лет. Это означает, что к концу эры вырождения распадется каждый второй из 1078 протонов, возникших после Большого взрыва.

Распад протона может осуществляться разными путями, но все же доминирует канал с образованием нейтрального пи-мезона и позитрона. Первая частица превращается в два высокоэнергетичных фотона, а вторая делает то же самое после аннигиляции с электроном. Таким образом, один протон дает начало четырем гамма-квантам.

Следовательно, в конце эры вырождения обычное вещество в составе планет и белых карликов начнет превращаться в излучение. Исчезновение протонов сулит смерть и нейтронным звездам. Они покрыты коркой обычного вещества, которое испарится при протонном распаде. На оголенной поверхности звезды плотность нейтронной материи относительно невелика, и нейтроны начинают исчезать в бета-распадах. Финал все тот же – вещество дает начало излучению.

Эра черных дыр приходится на промежуток 1038–10100 лет

В это время исчезнут практически все барионы (протоны и нейтроны), и единственными макрообъектами Вселенной останутся черные дыры. Однако и они постепенно испарятся в излучение и исчезнут во взрывах (см.

статью «Удивительная история черных дыр»). Супермассивная дыра, успевшая заглотить крупную галактику (порядка ста миллиардов солнечных масс), может протянуть не более 1098 лет.

Так что к концу этой эпохи дыры практически исчезнут.

Темная эра наступит, когда возраст мироздания превысит 10100 лет.

Из былого богатства материи останутся лишь кванты электромагнитного излучения почти нулевой температуры и стабильные лептоны (нейтрино, электроны и позитроны).

Некоторые электроны и позитроны образуют связанные пары (атомы позитрония), поперечник которых может составлять триллионы световых лет. Эти частицы будут сближаться по спирали и в конце концов тоже аннигилируют (через 10141 лет).

Оставшиеся в неимоверно разбухшем космосе свободные электроны и позитроны встречаться не будут, а посему и не исчезнут. Это и есть космологическая тепловая смерть в самом чистом виде.

Оправдается ли этот прогноз, сделанный в 1997 году? «Я полагаю, что сценарий Большой заморозки вполне убедителен до сих пор, – говорит «Популярной механике» профессор Мичиганского университета Фред Адамс. – Теперь мы знаем, что Вселенная расширяется с небольшим ускорением. Это означает, что космическое пространство опустеет быстрее, нежели в наших расчетах, но в остальном мало что изменится».

Профессор Калифорнийского университета Грегори Лафлин добавляет: «Космологическая тепловая смерть все же не означает беспредельного охлаждения. Девять лет назад мы считали, что температура Вселенной будет стремиться к абсолютному нулю. Однако недавно было показано, что благодаря ненулевой энергии вакуума температура реликтовых фотонов при любом расширении пространства не упадет ниже 10–27 К».

Гравитационная разрыв-трава

Сценарии Большого разрыва рассматривают с начала 1980-х годов. Наиболее экзотический из них в 2003 году предложили Роберт Калдвелл, Марк Камионковски и Невин Вейнберг. В соответствии с их моделью, все возрастающее увеличение темной энергии приведет к вселенскому антиколлапсу.

Ждать этого не так уж и долго – всего 20 миллиардов лет. За миллиард лет до этого срока скорость расширения пространства возрастет до такой степени, что кластеры галактик потеряют всякую устойчивость и начнут разрушаться. Распад Млечного Пути начнется за 60 миллионов лет до рокового финала.

За три месяца до него послесолнечный белый карлик не сможет удерживать оставшиеся планеты, и меньше чем за час расширяющееся пространство разорвет и их. А затем придет очередь пылевых частиц, атомов, атомных ядер и даже протонов и нейтронов, которые распадутся на кварки и глюоны.

Это-то и будет настоящим концом света.

Смертельный пузырек

Не все модели эволюции Вселенной относят ее гибель в далекое будущее. Существует сценарий, согласно которому финал может наступить даже завтра. Впервые он был предложен московскими физиками М.Б. Волошиным, И.Ю. Кобзаревым и Л.Б. Окунем в 1975 году, однако в их работе содержались ошибки. Спустя пять лет американцы Сидни Коулман и Фрэнк Де Луччиа уточнили этот сценарий.

В то время считалось, что вакуум нашего мира, скорее всего, является истинным и обладает нулевой энергией. Коулман и Де Луччиа, напротив, предположили, что наш вакуум фальшивый, то есть находится в чрезвычайно долгоживущем (как говорят физики, метастабильном) возбужденном состоянии с положительной энергией.

Они показали, что механизм квантового туннелирования делает возможным спонтанное превращение ложного вакуума в истинный в крошечной области пространства. Родившийся пузырек истинного вакуума станет расширяться, порождая внутри себя материю с абсолютно новыми физическими свойствами и полностью уничтожая наш фальшиво-вакуумный мир.

Где бы такой пузырь ни возник, до нас он доберется со скоростью света и, следовательно, без всякого предупреждения.

Аналог этого сценария возникает и в новейшей версии квантовой гравитации, основанной на теории суперструн. «Эта теория также предполагает, что вакуум метастабилен. Он может туннелировать в состояние с нулевой плотностью энергии, но может случиться и так, что эта плотность окажется отрицательной.

В первом случае наш мир обретет еще шесть пространственных измерений, то есть пространство-время станет уже не четырехмерным, а десятимерным. Разумеется, это будет мир с совершенно другой физикой, мы там не выживем. Второй вариант похуже.

Если плотность вакуумной энергии где-то упадет ниже нуля, космос будет поглощен пузырем всеобщего коллапса, расширяющимся со скоростью света, – объясняет профессор Стэнфордского университета Андрей Линде. – Коулман и Де Луччиа допускали последнюю возможность, однако не принимали ее всерьез.

В конце мая мы с коллегами опубликовали расчеты, из которых следует, что этот вариант нельзя сбрасывать со счетов. Однако он не означает конца всей Мультивселенной, поскольку в ней будут появляться новые миры, рожденные космической инфляцией. Так что мироздание как целое все же бессмертно».

Стягивающийся космос

Закрытые модели мироздания не отличаются особым разнообразием. Вселенная еще какое-то время будет расширяться, в силу чего температура реликтового космического излучения (которая сейчас равна 2,7 К) продолжит падать. Далее такое расширение сменится сжатием, скорость которого будет непрерывно увеличиваться.

Галактики станут сближаться, температура реликтовых фотонов возрастет, пространство-время будет искривляться все сильнее и сильнее, и в конце концов мироздание исчезнет в квантовой сингулярности. Фактически, это Большой взрыв с обратным знаком.

Сейчас плотность космической энергии меньше критической, и этот сценарий вроде бы не имеет шансов на реализацию.

Однако из некоторых квантовых теорий гравитации следует, что в будущем темная энергия может изменить знак и начать работать не на расширение, а на сжатие пространства. В этом случае коллапс мироздания может стать реальностью.

Любопытно, что согласно кое-каким расчетам его придется ожидать примерно столько же, сколько и Большого разрыва – 10–20 миллиардов лет.

Вселенские маятники

Существуют сценарии циклически пульсирующего мироздания, многократно рождающегося из сингулярностей, претерпевающего расширение и сжатие и вновь гибнущего в коллапсе – этакий вселенский маятник, качающийся из стороны в сторону, с постепенно затухающими колебаниями.

В 2005 году такую модель с циклами длительностью порядка триллиона лет предложили американец Пол Стейнхардт из Принстонского университета и его британский коллега Нейл Тьюрок из Кембриджа.

В их сценарии от колебания к колебанию вакуум многократно переходит на все более низкие энергетические уровни, что и служит причиной катаклизмов. Эта модель хороша тем, что может объяснить то, что не объясняют другие модели, например, что было до Большого взрыва.

Читайте также:  Вполне логичный вопрос, что такое солнце? - все о космосе

Но в конце концов у Вселенной, как у пружинных часов, просто «закончится завод» – плотность вакуумной энергии достигает истинного минимума, и вот тогда Вселенная коллапсирует окончательно и бесповоротно. Впрочем, ждать этого придется очень долго.

Сентябрь 2006 | Алексей Левин

Нравится

Big Rip, Линде, Окунь, Роберт Калдвелл, Фред Адамс

Источник: http://victorpetrov.ru/big-rip-bolshojj-razryv.html

Физики пророчат Большой разрыв Вселенной, которая, как оказалось, не так уж и велика

Физики пророчат Большой разрыв Вселенной

13:18 / 02.07.2015

Группа физиков из Университета Вандербильта в Нашвилле представила новые доказательства в пользу того, что Вселенная прекратит свое существование. Это произойдет через 22 миллиарда лет в результате так называемого Большого разрыва.

GLOBAL LOOK press

Согласно результатам исследований, опубликованных в журнале Physical Review D и выложенных на всеобщее обсуждение на сайте Университета Вандербильта, ученые использовали новый подход к так называемой космологической объемной вязкости. Все выводы были получены физиками при помощи абстрактных математических расчетов на суперкомпьютерах.

“Возможно, но маловероятно, что феномен космологической вязкости отвечает за все те процессы, которые мы связываем с тем, что Вселенная расширяется с ускорением.

Но более вероятно то, что она просто помогает темной энергии ускорять рост Вселенной.

Если это так, то мы сможем использовать данные по вязкости для уточнения и изучения ее природы”, – уверяет один из авторов новой теории – Марсело Дисконци.

По мнению ученых, дело в том, что если разогнать сжатую жидкость до околосветовых скоростей, то при определенных условиях часть ее сможет двигаться быстрее скорости света, что невозможно с точки зрения физики. Это противоречит всей современной науке. Поэтому большинство космологов просто игнорируют данный феномен, считая его несущественным.

Подобное решение, как показали формулы вязкости и основанные на них расчеты физиков из Нашвилла, заметно исказили предсказания о том, что будет происходить с Вселенной по мере ее дальнейшего роста в результате существования загадочной темной энергии. Более того, новые формулы, выведенные в Университете Вандербильта, показывают, что полный распад мироздания в ходе Большого разрыва более вероятен, чем было принято считать.

Дело в том, что феномен космологической вязкости будет не тормозить, а помогать темной энергии расширять пределы Вселенной. В результате этого через примерно 22 миллиарда лет даже атомы начнут распадаться, а галактики, планеты и прочие небесные тела исчезнут. Однако этот прогноз неокончательный, это лишь одна из возможных моделей развития Вселенной.

http://www.dni.ru/tech/2015/7/2/308078.html

НАСА: Вселенная конечна и невелика

10.10.03, Пт, 13:14, Мск

Такова, согласно данным с космического зонда WMAP, крупномасштабная структура нашей Вселенной. Фото NASA

Данные, полученные космическим аппаратом НАСА, озадачили астрономов и с новой остротой поставили вопрос о возможной ограниченности Вселенной. Имеются свидетельства того, что она, кроме того, неожиданно мала (по астрономическим, естественно, масштабам), и только вследствие своеобразного “оптического обмана зрения” нам кажется, что нет ей конца и края.

Сумятицу в научном сообществе вызвали данные, полученные американским зондом WMAP (Wilkinson Microwave Anisotropy Probe), работающим с 2001 года. Его аппаратура измеряла флуктуации температуры реликтового микроволнового излучения.

Астрономов, в частности, интересовало распределение величин (“размеров”) пульсаций, поскольку оно может пролить свет на процессы, происходившее во Вселенной на начальных стадиях ее развития. Так, если бы Вселенная была бесконечной, диапазон этих пульсаций был бы неограниченным.

Анализ полученных WMAP данных о мелкомасштабных флуктуациях реликтового излучения подтверждал гипотезу о бесконечной вселенной. Однако выяснилось, что в больших масштабах флуктуации практически исчезают.

Компьютерное моделирование подтвердило, что подобный характер распределения флуктуаций возникает только в том случае, если размеры Вселенной невелики, и в них просто не могут возникнуть более протяженные области флуктуаций.

По мнению ученых, полученные результаты свидетельствуют не только о неожиданно малых размерах Вселенной, но и о том, что пространство в ней “замкнуто само на себя”.

Несмотря на свою ограниченность, края как такового Вселенная не имеет – луч света, распространяясь в пространстве, должен через определенный (большой) промежуток времени возвратиться в исходную точку.

Из-за этого эффекта, например, астрономы Земли могут наблюдать одну и ту же галактику в разных частях небосвода (да еще с разных сторон). Можно сказать, что Вселенная – это зеркальная комната, в которой каждый предмет, находящийся внутри, дает множество своих зеркальных образов.

По данным моделирования, результаты наблюдений WMAP свидетельствуют о том, что Вселенная представляет собой набор бесконечно повторяющихся додекаэдров – правильных многогранников, поверхность которых образована 12 правильными пятиугольниками.

Именно такую форму имеют знакомые всем футбольные мячи.

При этом, по мнению астрономов, сходство между “додекаэдровой” моделью Вселенной и данными WMAP просто “потрясающее”, и они “соответствовали друг другу гораздо лучше, чем можно было вообразить”.

Если результаты будут подтверждены, наши взгляды на Вселенную будут нуждаться в серьезной коррекции. Во-первых, она окажется относительно небольшой – около 70 млрд. световых лет в поперечнике. Во-вторых, становится возможным наблюдать всю Вселенную целиком и убедиться в том, что в ней везде действуют одни и те же физические законы.

Источник: по материалам журнала New Scientist.

http://www.cnews.ru/news/top/index.shtml?2003/10/10/149872

Избыточный вес Вселенной

По мнению ученых, полученные результаты свидетельствуют о неожиданно малых размерах Вселенной

19 мая 2007, 10:23

Геннадий Нечаев

Американские астрономы из NASA представили доказательства существования темной материи во Вселенной.

Речь идет об обнаруженном телескопом Hubble скоплении вещества кольцеобразной формы на расстоянии около 5 млрд световых лет от Земли.

Диаметр кольцеобразного скопления, обнаруженного учеными, составляет около 2,6 млн световых лет. Открытие озадачило астрономов и с новой остротой поставило вопрос о возможной ограниченности Вселенной.

Открытие было сделано случайно еще в августе 2006 года во время нанесения на карты областей распределения темной материи в скоплении галактик Cl 0024+17 (ZwC10024+1652), отмечает газета The Telegraph. Вначале кольцо даже приняли за ошибку в методике обработки и представления данных.

Таким образом, удалось обнаружить данный вид материи в чистом, то есть не в смешанном с веществом, виде, кроме того, темная материя в таких огромных количества ранее также не была обнаружена.

Состав неясен, происхождение – темное

«Если результаты будут подтверждены, наши взгляды на Вселенную будут нуждаться в серьезной коррекции» Темная материя (или скрытая масса) – это вещество неизвестного состава, не испускающее и не поглощающее электромагнитного излучения, но участвующее в гравитационных взаимодействиях. Поэтому наблюдать темную материю непосредственно невозможно.

О ее существовании свидетельствуют результаты наблюдений за искривлением проходящих мимо скоплений темной материи световых лучей под действием силы притяжения. Единственное, в чем уверены физики и астрономы, – где-то в космосе существует огромная масса, на которую реагирует видимая нами часть Вселенной.

Астрономы, занимавшиеся изучением карликовых галактик, формирующихся в результате взаимодействия галактик большого размера, обнаружили странную вещь: обследованные ими карлики оказались гораздо более массивными, чем ожидалось из теоретических моделей. Возникло предположение, что дополнительное вещество образует та «пропавшая масса», поисками которой ученые уже не раз безуспешно занимались.

«Мы впервые обнаружили темную материю уникальной формы и в уникальном месте, наблюдению не мешают близлежащие галактики и газовые скопления, а форма отличается от той, которую принимают галактики и космический газ», – заявил один из астрономов NASA Джеймс Джи, передает AP.

Стоит отметить, что ранее существование темной материи не имело практических доказательств. «Впервые удалось обнаружить скопление вещества в виде особой структуры, не похожей на все другие скопления во Вселенной», – рассказал астроном Мюнгкук Джеймс Джи из университета Джонса Хопкинса.

Цемент, скрепляющий мироздание

Это открытие крайне важно для астрофизики. Ученые давно ищут доказательство существования темной материи. Они пришли к выводу, что существование галактик невозможно, если брать в расчет лишь видимые им материи и вещества, заключенные в них.

Если бы не существовало некой другой субстанции, удерживающей галактики своим сильнейшим гравитационным полем, все они (галактики) уже давно бы разлетелись в разные стороны.

Таким «сдерживающим фактором» и являются скопления во Вселенной темной материи.

Вообще, темная материя до сих пор заставляет сомневаться в теории происхождения Вселенной единовременно, в результате Большого взрыва.

Измерения параметров «послесвечения» Большого взрыва – микроволнового реликтового фона – заставляют предположить, что в условиях ранней Вселенной таинственная темная материя приблизительно в 6 раз превосходила по массе обычное вещество.

Это соотношение должно было сохраниться и до наших дней, однако подсчеты, основанные на наблюдениях всех звезд, газовых и пылевых облаков в окружающем нас космическом пространстве, позволяют заключить, что в современной нам Вселенной содержится только четверть ожидаемого количества обычного вещества. Прочее, что составляет массу Вселенной, – темная материя, которая и не дает ей расширятся до бесконечности; при этом, естественно, плотность «обычного» вещества должна падать. Но астрономы этого не наблюдают.

Зеркальная бесконечность

Но из данного открытия следуют и далеко более парадоксальные и важные выводы. Например, данные, полученные космическим аппаратом NASA, озадачили астрономов и с новой остротой поставили вопрос о возможной ограниченности Вселенной.

Имеются свидетельства того, что она, кроме того, неожиданно мала (по астрономическим, естественно, масштабам) и только вследствие своеобразного «оптического обмана зрения» нам кажется, что нет ей конца и края. Компьютерное моделирование подтвердило, что наблюдаемый характер реликтового излучения возникает только в том случае, если размеры Вселенной невелики.

По мнению ученых, полученные результаты свидетельствуют не только о неожиданно малых размерах Вселенной, но и о том, что пространство в ней замкнуто само на себя.

Несмотря на свою ограниченность, края как такового Вселенная не имеет – луч света, распространяясь в пространстве, должен через определенный (большой) промежуток времени возвратиться в исходную точку.

Из-за этого эффекта, например, астрономы Земли могут наблюдать одну и ту же галактику в разных частях небосвода (да еще с разных сторон).

Можно сказать, что Вселенная – это зеркальная комната, в которой каждый предмет, находящийся внутри, дает множество своих зеркальных образов.

По данным моделирования, результаты наблюдений свидетельствуют о том, что Вселенная представляет собой набор бесконечно повторяющихся додекаэдров – правильных многогранников, поверхность которых образована 12 правильными пятиугольниками. Именно такую форму имеют знакомые всем футбольные мячи.

Если результаты будут подтверждены, наши взгляды на Вселенную будут нуждаться в серьезной коррекции. Во-первых, она окажется относительно небольшой – около 70 млрд световых лет в поперечнике. Во-вторых, становится возможным наблюдать всю Вселенную целиком и убедиться в том, что в ней везде действуют одни и те же физические законы.

Источник: https://alexandr-palkin.livejournal.com/3956109.html

Есть ли конец у Вселенной?

Есть ли конец у Вселенной?

Подобные высказывания сродни тем великим идеям, которые кардинально меняют взгляд на наше место в этом мире. Один из таких переворотов в сознании произошел в 1543-м году, когда Николай Коперник показал, что Земля – не центр Вселенной.

В 20-е годы XX века Эдвин Хаббл, заметив, что галактики во Вселенной отдаляются друг от друга, дал жизнь идее о том, что наша Вселенная не существовала вечно, а образовалась в результате определенного события – Большого взрыва. Теперь мы на пороге нового открытия.

Читайте также:  Космонавт овчинин алексей николаевич - все о космосе

Если пределы Вселенной найдутся, мы столкнемся с новым еще более трудным вопросом: а что там – по ту сторону границ? 

Бесконечность Вселенной подразумевает, что она должна быть бесконечна не только в пространстве, но и во времени, а значит, иметь бесчисленное количество звезд. В этом случае наше небо было бы сплошь усеянным светилами и ослепительно ярким круглые сутки. Однако небесная тьма свидетельствует о том, что космос не существовал вечно.

По распространенной теории, все началось с Большого взрыва, который дал возможность самому существованию и расширению материи. Уже сама эта концепция опровергает идею вечности Вселенной, а значит, подрывает и веру в ее беспредельность.

В то же время теория Большого взрыва создает определенные трудности для астрономов, ищущих границы нашего космического пространства. 

«Дело в том, что путешествия на огромные расстояния занимают световые годы, а, стало быть, ученые всегда получают устаревшие данные. Пространство, проходимое светом в ранней Вселенной, выросло благодаря ее последующему расширению.

Ближайшие к нам звезды относительно юны, с отдаленными объектами счет идет уже на тысячи лет, а если посмотреть на другие галактики, то на миллиарды. При этом мы видим далеко не все галактики. 13,7 млрд лет – вот доступный нам максимум», – поясняет Нил Корниш, астрофизик из Монтанского Государственного Университета.

Своеобразный барьер для нашего зрения представляет собой реликтовое излучение, образовавшееся примерно через 380 тысяч лет после Большого взрыва, когда Вселенная расширилась и остыла настолько, что появились атомы. Это излучение- что-то вроде детской фотографии космоса, на которой он запечатлен еще до того, как появились звезды.

За ним могут существовать как границы, так и бесконечно продолжающаяся Вселенная. Но, невзирая на мощность телескопов, эта область остается невидимой. 

Реликтовое излучение мешает ученым вглядеться в самые дальние дали космоса, но в то же время оно несет в себе весьма ценную информацию, заключающуюся в микроволновом фоне. Ученые предполагают: будь Вселенная неограниченных размеров, в ней можно было бы найти волны всех вероятных длин.

Однако фактически волновой спектр космоса очень узок: по-настоящему крупных волн аппарат NASA WMAP, предназначенный для изучения реликтового излучения, ни разу не обнаружил. «Вселенная обладает свойствами музыкального инструмента, внутри которого длина волн не может превосходить его длину.

Мы поняли, что Вселенная не вибрирует на длинных волнах, что стало подтверждением ее конечности», – говорит Жан Пьер Люмине из Парижской обсерватории во Франции. 

Британские астрономы из университета Портсмута создали графическую трехмерную модель Вселенной. На создание карты 2MASS Redshift Survey (2MRS) у них ушло десять лет

Дело за малым – определить ее границы и форму.

Глен Старкманн, физик из Канады, работающий в Кливлендском университете Кейс Вестерн, полагает, что нашел способ определить границы Вселенной, даже если они дальше зоны нашей видимости. Это можно сделать опять-таки с помощью волн.

«Звуковые волны, распространившиеся по Вселенной во времена ее молодости, могут поведать многое. От формы Вселенной, как, например, от формы барабана, зависит, какого типа вибрации в ней возникнут», – говорит Глен.

Его команда планирует применить спектральный анализ к нашей Вселенной, чтобы на основе издаваемых ею звуков определить ее форму. Правда, эти исследования долгосрочные, и на поиски ответа могут уйти годы. 

Впрочем, выяснить, есть ли у Вселенной границы, можно и другим способом. Им сейчас как раз занимается Жанна Левин, теоретик из Кэмбриджского университета. Она объясняет принцип построения Вселенной на примере старой доброй компьютерной игры «Астероиды».

Если управляемый игроком космический корабль уйдет вверх, за пределы экрана, он тут же появится снизу. Такой странный маневр становится понятным, если мысленно свернуть экран в трубу, как журнал: получится, что аппарат просто движется по окружности.

 

«Так же и мы, живя внутри Вселенной, не можем выбраться наружу. Нам недоступно измерение, с которого мы могли бы взглянуть на нашу трехмерную Вселенную со стороны.

Взять, к примеру, бублик – это, кстати, вполне подходящая в данном случае форма для Вселенной – хотя его поверхность четко очерчена, никто из живущих внутри не наткнется на его пределы: им кажется, что никаких границ не существует», – рассказывает Жанна. 

Впрочем, шанс распознать эти пределы все же есть, хоть и мизерный – нужно следить за тем, как ведет себя свет. Представим себе, что Вселенная – это комната, а вы, вооружившись фонарем, стоите в ее центре. Свет от фонаря достигнет стены за вашей спиной, а затем отразится от стены напротив. и вы увидите в ней отражение собственной спины.

Те же правила могут работать и в ограниченном космосе. «Световые портреты» могут отражаться от предполагаемых космических стен и таким образом многократно дублироваться, но с некоторыми изменениями. И будь Вселенная чуть больше Земли, свет мгновенно облетел бы ее, и искривленные образы планеты появились бы по всему небосводу.

Но космос настолько огромен, что свету понадобятся миллиарды лет, чтобы его облететь и выдать отражение. 

Но вернемся к нашим «баранкам». Жанна Левин со своей теорией о Вселенной в виде бублика нашла поддержку в лице Френка Штайнера из университета Ульма в Германии.

Проанализировав данные, полученные с помощью WMAP, этот ученый сделал вывод, что наибольшее совпадение с наблюдающимся реликтовым излучением дает именно Вселенная-пончик.

Его команда также попыталась угадать вероятный размер Вселенной – согласно исследованиям, он может достичь 56 миллиардов световых лет в поперечнике. 

Жан Пьер Люминэ при всем своем уважении к бублику г-жи Левин все же уверен, что Вселенная представляет собой сферический додекаэдр или, проще говоря, футбольный мяч: двенадцать пятиугольных округлых поверхностей, расположенных симметрично.

По сути, теория французского ученого не особо противоречит научным изысканиям Жанны Левин с ее игрой в «Астероиды». Тут работает та же схема – покидая одну из сторон, Вы оказываетесь на противоположной.

Например, полетев на какой-нибудь «сверхскоростной» ракете по прямой, можно, в конце концов, вернуться к точке старта. Не отрицает Жан-Пьер и принципа зеркальных отражений.

Он уверен, что если бы существовал супермощный телескоп, можно было бы увидеть в разных сторонах космоса одни и те же объекты, только на разных стадиях жизни. Но когда края додекаэдра находятся на расстоянии миллиардов световых лет, слабые отражения на них не могут заметить даже самые наблюдательные астрономы. 

Отметим, и у Люмине с его концепцией футбольного мяча нашелся союзник – математик Джеффри Уикс. Этот ученый утверждает, что волны в космическом микроволновом фоне выглядят точно так же, как они должны выглядеть, возникнув внутри правильной геометрической фигуры с двенадцатью пятиугольными гранями. 

Первое мгновение жизни Вселенной сыграло огромную роль в ее дальнейшей эволюции.

Ученые до сих пор строят сложные гипотезы относительно инфляции – очень короткого промежутка времени, намного меньше секунды, за который размер Вселенной увеличился в сотню триллионов раз.

Большинство ученых склоняется к тому, что расширение Вселенной продолжается до сих пор. И, казалось бы, теория бесконечности космоса является логичным продолжением идеи инфляции. 

Компьютерная модель Вселенной

Однако у Энди Олбрахта, физика-теоретика Калифорнийского университета в Девисе, на этот счет другое мнение: хоть расширение Вселенной продолжается и по сей день, у этого процесса все же есть пределы. Чтобы пояснить свою теорию, Энди подобрал Вселенной метафору мыльного пузыря.

Традиционная теория инфляции допускает бесконечное увеличение этого пузыря, но даже детсадовцы знают, что рано или поздно мыльный шар должен лопнуть. Энди считает, что, достигнув своего максимума, инфляция должна остановиться. И этот максимум не так уж велик, как нам кажется.

По мнению Олбрахта, Вселенная лишь на 20% больше видимого нами пространства. «Конечно, неимоверно сложно от бесконечности прийти к такому крошечному размеру – всего на каких-то 20% больше! У меня даже началась клаустрофобия», – шутит ученый.

Безусловно, умозаключения Олбрахта весьма спорны и требуют фактического подтверждения, а пока большинство астрономов полагает, что инфляция затухнет еще очень нескоро. 

Расширение Вселенной, кстати, является лучшим объяснением движения галактик на видимой нами территории. Правда, некоторые особенности этого галактического перемещения вызывают недоумение.

Группа специалистов NASA под руководством астрофизика Александра Кашлинского, изучая микроволновое и рентгеновское излучение, обнаружила, что около восьмисот отдаленных галактических скоплений дружно направляются в одну сторону со скоростью в тысячу километров в секунду, словно их притягивает некий магнит.

Это вселенское перемещение было названо «темным потоком». По последним данным, он охватывает уже 1400 галактик. Они устремлены в район, расположенный более чем в трех миллиардах световых лет от Земли. Ученые предполагают, что как раз где-то там, за пределами, недоступными наблюдениям, располагается огромная масса, которая и притягивает материю.

Однако по существующей теории, вещество после Большого взрыва, породившего нашу Вселенную, распределилось более-менее равномерно, а значит, и концентраций масс, обладающих столь фантастической силой, быть не может. Тогда что там? 

Ответ на этот вопрос дала физик-теоретик Лаура Мерсини-Хофтан, руководитель группы из университета Северной Каролины. Она всерьез рассматривает существование другой Вселенной, расположенной по соседству с нашей.

Ее умозаключения, кажущиеся на первый взгляд невероятными, вполне сочетаются с озвученной Энди Олбрахтом теорией инфляции и «мыльного пузыря», а также с «темным потоком» Александра Кашлинского. Теперь изыскания этих ученых сложись в единую картину как пазлы.

Темный поток, наблюдающийся в нашем космическом пространстве, может быть спровоцирован одним из соседних «пузырей» – другой Вселенной. 

Множественность вселенных Хофтан объясняет теорией вероятности. Она считает зарождение нашего мира чудом, он мог запросто и не появиться: шансы на его возникновение ничтожно малы и составляют 1 к 10133. 

«Задавать вопрос о происхождении Вселенной можно тогда, когда у нас есть множественная структура, в которой она сформировалась, – такие места, условия в которых благоприятны для ее зарождения. Другими словами, можно предположить множество Больших взрывов и множество вселенных», – отмечает Хофтан. Для наглядности она сравнивает эти благоприятные места с комнатами в отеле.

Вселенная может зародиться лишь в свободном «номере» и существовать там в одиночестве. Однако это не значит, что в «номер» через стенку не сможет вселиться еще один такой космомир.

Но если наша Вселенная – комната в отеле, должны ли мы слышать своих соседей? В 2007-м году аппарат WMAP зафиксировал необычную область существенно пониженного фона реликтового излучения, что говорит об отсутствии в ней материи.

По словам ученой дамы, единственным объяснением для такой холодной и абсолютной пустоты является то, что там действуют какие-то другие силы, возможно, наличие другой Вселенной, огромная масса которой притягивает соседнюю материю. И хотя эти «чужие» объекты неподвластны нашему зрению, наша соседка все же дает о себе знать посланиями в виде холодного пятна и потока галактических кластеров. 

Конечно, в научном сообществе реакция на выводы о множественных вселенных неоднозначна.

Однако ученые, пытающиеся дать характеристику космическому пространству, готовы к свершению новых революций в науке.

Наша Вселенная, ранее считавшаяся бесконечной, может перестать быть таковой и занять должное место в пространстве, среди такого количества вселенных, которое невозможно даже представить.

С точки зрения науки

Руслан Зораб

Naked Science VK

Источник: https://naked-science.ru/article/nakedscience/est-li-konec-u-vselennoy

Ссылка на основную публикацию