Наблюдение юпитера – все о космосе

Исследование Юпитера

Наблюдение Юпитера - все о космосе

Солнечная система > Система Юпитер > Исследование Юпитера

Планета Юпитер | Спутники | Кольца | Фотографии

В 1973 году к Юпитеру направился первый космический аппарат. Этим смельчаком стал Пионер-10, которому удалось подойти достаточно близко, чтобы передать первые снимки.

Художественное видение Пионера-10 возле Юпитера

Эти изображения дали много полезной информации. Так исследователи узнали, что поля излучения намного сильнее возле планеты. Удалось вычислить массу, диаметр и величину полярного сплющивания.

Через 6 лет запустили Вояджеры, которые сумели рассмотреть не только спутники, но и кольца. Они подтвердили антициклонность Большого Красного Пятна и наличие молнии на темной стороне.

Впервые на орбите закрепился аппарат Галилео в 1995 году. Он оставался на своей позиции 7 лет и сумел рассмотреть все луны и даже развернут зонд в атмосферу. Его идеальное расположение помогло отследить прибытие кометы Шумейкера-Леви 9 в 1994 году. В 2003 году механизм направили в планету, где он разбился на ускорении в 50 км/с.

Полученные сведения с орбиты показали, что атмосфера на 90% представлена водородом. Температура – 300°C, а ветер ускорялся до 644 км/ч.

Мимо планеты в 2000-м году пролетел зонд Кассини, получивший замечательные снимки в максимально высоком разрешении. Также мимо промчался Новые Горизонты, запечатлевший высвобождение плазмы, вулканы Ио и особенности всех спутников Галилея.

В 2016 году к планете подлетел аппарат Юнона. Он исследовал внутренний состав, атмосферу, магнитосферу и гравитационное поле, чтобы расширить понимание процесса планетарного формирования.

Обжог двигателя Юноны над орбитой Юпитера

10 июля зонд передал первые изображения с орбиты и активировал для работы инструменты. Кадры сняты на удаленности в 4.3 млн. км от Юпитера. В цветном снимке отобразились атмосферные особенности, а именно Большое Красное Пятно, а также 4 крупных спутника.

В 2022 году ожидается миссия JUICE от ЕКА, а также полет на Европу в 2025 году.

С обнаружением экзопланет мы поняли, что планеты способны по размеру превосходить нашего газового гиганта. Кеплеру уже удалось найти более 300 супер-юпитеров. Среди примеров стоит вспомнить PSR B1620-26 b, считающийся старейшей планетой (12.7 млрд. лет). Кроме того, есть HD 80606 b с наиболее эксцентричной орбитой.

Интересно то, что в теории есть планеты, которые в 15 раз крупнее Юпитера. При синтезе дейтерия они становятся коричневыми карликами. Наименование Юпитер получил от римлян в честь верховного божества.

Знаменательные даты:

  • 1610 – Галилей впервые детально рассматривает Юпитер;
  • 1973 – Пионер-10 становится первым аппаратом, пролетевшим за черту астероидного пояса и добравшимся к Юпитеру;
  • 1979 – Вояджеры 1 и 2 замечают слабые кольца газового гиганта, новые спутники и отмечают вулканическую активность на Ио;
  • 1992 – Улисс пролетает над Юпитером 8 февраля. Планетарная гравитация подкорректировала траекторию полета аппарата на юг от плоскости эклиптики, выведя его на финальную орбиту;
  • 1994 – Ученые отслеживают осколки кометы Шумейкер-Леви 9, упавшей на территорию южного полушария;
  • 1995-2003 – Аппарат Галилео спускает зонд в атмосферный слой Юпитера и проводит масштабное изучение планеты, лун и кольцевой системы;
  • 2000 – Кассини выполняет максимально близкий пролет к гиганту на удаленности в 10 млн. км. Это помогло получить четкие снимки планеты в истинном цвете;
  • 2007 – По пути к Плутону аппарат Новые Горизонты выполнил ряд снимков, отобразивших атмосферные бури, вулканическую поверхность Ио, кольца и ледяную Европу;
  • 2009 – 20 июля комета/астероид врезалась в территорию южного полушария Юпитера. Это случилось спустя 15 лет после удара Шумейкер-Леви 9;
  • 2011 – Юнона приступает к изучению химии, атмосферного слоя, внутренней структуры и магнитосферы планеты;
  • 2016 – Юнона подходит к Юпитеру, чтобы провести глубокое изучение атмосферы, структуры и магнитосферы. Цель – разобраться в происхождении и эволюционных этапах;

Ссылки

Источник: http://v-kosmose.com/yupiter-2/issledovanie-yupitera/

Наблюдение Юпитера

Юпитер – одна из пяти планет, известных с глубокой древности.

Сведения о Юпитере

Его диаметр в 11.2 раза превышает диаметр Земли, объём больше в 1300 раз, а масса — в 317.8 раз. Период обращения вокруг Солнца чуть меньше 12 земных лет. Юпитер — газовый гигант, не имеющий твёрдой поверхности, его атмосфера состоит на 90% из водорода и на 10% из гелия. Его ядро, размером с Землю и составляющее около 4% общего объёма планеты, твёрдое.

Строение Юпитера

Период вращения вокруг оси – самый маленький среди планет Солнечной системы и составляет чуть меньше 10 часов. Из – за большой скорости вращения газовый гигант сплюснут у полюсов. Юпитер вращается не как твёрдое тело, скорость вращения на разных широтах неодинакова: на экваторе она больше, по мере приближения к полюсам уменьшается.

Плоскость экватора планеты наклонена к плоскости орбиты на 3 градуса, поэтому смены времён года нет. На сегодняшний день открыто 79 спутников планеты и система колец. Юпитер образовался из той же газовой туманности, что и Солнце, но для запуска термоядерной реакции ему не хватает массы – она должна быть в 75 – 80 раз больше.

Поэтому планету иногда называют «неудавшейся звездой».

Когда наблюдать

Наблюдение планет

Наиболее благоприятное время для наблюдений Юпитера – момент противостояния (наименьшее расстояние от планеты до Земли). Оно происходит каждый год и смещается по сравнению с прошлым примерно на месяц вперёд. Ближайшие противостояния:

  • 2018 год – 9 мая
  • 2019 год – 10 июня

При летних противостояниях Юпитер поднимается невысоко над линией горизонта (не выше 30 градусов для российских широт). Удобнее вести наблюдения при зимних противостояниях, когда он поднимается высоко над горизонтом и виден всю ночь. Зимой можно увидеть полный оборот планеты вокруг оси.

Что можно увидеть на Юпитере

Атмосфера Юпитера нестабильна, в ней бушуют мощные вихри, поэтому внешний вид планеты постоянно меняется. Но можно в строении атмосферы выделить закономерности и устойчивые образования.

Пояса и зоны

Пояса и зоны

Верхние облака Юпитера растянулись полосами параллельно экватору. Светлые полосы называют зонами, тёмные – поясами.

Чуть выше и ниже экватора видны соответственно Северный и Южный экваториальные пояса. Ближе к полюсам расположены Северный и Южный умеренные пояса. Между экваториальными и умеренными поясами видны соответственно Северные и Южные тропические зоны. На полюсах заметны тёмные полярные шапки.

Большое красное пятно и белые пятна

Большое красное пятно Юпитера

Большое Красное пятно представляет собой гигантский атмосферный вихрь. Оно находится в Южной тропической зоне, имеет овальную форму и ярко – розовый цвет, контрастно выделяясь на диске.

В районе Южного умеренного пояса находятся три Белых пятна, представляющие собой скопления жидкого газа. Из – за белого цвета разглядеть их сложно.

Спутники, затмения и покрытие

Тройное солнечное затмение на Юпитере

Рядом с диском Юпитера видны четыре спутника, открытые ещё Галилеем. В порядке удаления от планеты, это: Ио, Европа, Ганимед (самый большой) и Каллисто. Скорость их вращения вокруг Юпитера достаточно велика, через полчаса наблюдения заметно изменение их расположения.

Можно наблюдать прохождение теней от спутников по диску планеты и разглядеть, что тени двух ближних спутников имеют более резкие очертания, а два дальних спутника отбрасывают тени с менее чёткими, размытыми границами.

В телескоп видны затмения – вход спутников в тень планеты, и покрытия – когда спутники заходят за её диск. Прохождение спутников по диску Юпитера наблюдать сложнее, так как они слабо выделяются на ярком диске.

Оборудование для наблюдений

Бинокли с увеличением, начиная с 7 – кратного, позволят разглядеть крошечный диск Юпитера, большее увеличение даст возможность увидеть галилеевы спутники, но для наблюдений необходимо использовать телескоп.

Для наблюдений планет, в том числе и Юпитера, обычно используют телескопы – рефракторы с апертурой (диаметром собирающей линзы или главного зеркала) от120 до 150 миллиметров.

Оборудование для наблюдений

Уже в 60 – миллиметровый телескоп можно увидеть полосы на Юпитере, а в 80 – миллиметровый разглядеть более мелкие детали: светлые и тёмные пятна, углубления в краях полос и выступы, поперечные соединительные «мостики» между полосами и их разветвления, Красное пятно и тени спутников на диске планеты.

150 – миллиметровый телескоп даст возможность увидеть более мелкие детали и разницу в размерах теней спутников. Наибольшее количество деталей можно наблюдать в 300 – миллиметровый телескоп, но при большем диаметре объектива изображение начнёт «размываться» из – за движения земной атмосферы.

Для улучшения контрастности и выделения некоторых деталей из окружающего фона используют светофильтры. Например, изображение Красного пятна и поясов с красно – коричневой окраской улучшают синий и голубой светофильтры, а красный позволит выделить детали, имеющие синий цвет. Можно поэкспериментировать со светофильтрами, добиваясь более отчётливого изображения деталей.

by HyperComments

Источник: http://SpaceGid.com/nablyudenie-yupitera.html

Наблюдение Юпитера

Юпитер вращается так быстро, что это вращение делает его выпуклым возле экватора и сплющенным на полюсах. Если наблюдать его ясной ночью при спокойном состоянии атмосферы, то можно увидеть в телескоп этот сплющенный сфероид.

Охота за Галилеевыми спутниками

При спокойном состоянии атмосферы и хорошей видимости можно увидеть в телескоп детали Юпитера и, возможно, один или несколько его спутников. У Юпитера четыре крупных спутника — Ио, Европа, Ганимед и Каллисто.

 Четыре самых известных спутника Юпитера называют также Галилеевыми спутниками в честь их первооткрывателя Галилео Галилея

Вы не сумеете увидеть в свой телескоп много деталей на любом из спутников Юпитера (или Сатурна) и, таким образом, понять, что представляет собой их поверхность. Но наверняка заметите разницу в их яркости и (при внимательном наблюдении), возможно, в цвете.

Но если вы посмотрите на фотографии Галилеевых спутников, сделанные с помощью космического зонда, то увидите, что каждый спутник— это маленький самостоятельный мир, структура и пейзаж которого придает ему индивидуальный характер.

 Ганимед, диаметр которого составляет 5268 км, — больше Меркурия (диаметр которого — 4880 км); он считается самым крупным спутником в Солнечной системе.

Пятнистая поверхность Ганимеда состоит из светлых и темных зон; предполагают, это покрытые льдом и каменистые районы соответственно.

Самая заметная его деталь — Валгалла, огромный кольцевидный ударный бассейн, по размерам примерно такой же, как континентальная часть США (если оценивать его размер по самому внешнему кольцевому гребню).

 Поверхность Ио усеяна более чем 80 активными вулканами. Помимо Земли, это единственное место, где есть явные свидетельства идущих вулканических процессов. Вероятнее всего, вулканы Марса давно мертвы, а свидетельства активного вулканизма на Венере весьма противоречивы — здесь можно различить большие вулканы, но они, скорее всего, тоже мертвы.

 На Европе есть складчатые структуры, похожие на ледяные торосы. Похоже, ее поверхность — это ледяная корка, под которой находятся талый снег и океаны воды, возможно, глубиной 150 км. Помимо Земли, это единственное место в Солнечной системе, где есть веские доказательства наличия воды в жидком состоянии. Наличие воды на Марсе под слоем вечной мерзлоты — это только теория.

Читайте также:  Как узнать какая сегодня фаза у луны - все о космосе

 У Каллисто темная поверхность, усеянная многочисленными белыми кратерами. Вероятно, ее поверхность представляет собой грязный лед, смесь льда и камня. А в местах ударов астероидов, комет и крупных метеоритов на поверхность из нижних слоев вышел чистый лед. Отсюда и белые кратеры.

Конечно, вы не будете наблюдать спутники Юпитера крупным планом, так как для этого необходимо очень сложное специальное оборудование. Но в телескоп можно увидеть некоторые аспекты этих спутников (об этом — в следующем разделе).

 Ио, Ганимед, Европа и Каллисто постоянно движутся, меняют свое относительное положение и, по мере обращения вокруг Юпитера, то появляются, то исчезают. Если вы не видите один из этих спутников, то вот некоторые вероятные причины.

 Может, сейчас покрытие, когда один из спутников проходит за диском Юпитера.

 Может, сейчас затмение спутника, когда он заходит в тень Юпитера. Поскольку Земля обычно находится в стороне от прямой линии “Солнце-Юпитер”, тень Юпитера может простираться далеко в сторону от него (с точки зрения наблюдателя с Земли). Когда хорошо видимый спутник, находящийся далеко от Юпитера (а не за его диском), внезапно тускнеет и исчезает, значит, он зашел в тень Юпитера.

 Спутник может быть в транзите перед диском Юпитера; в это время его особенно трудно увидеть. Дело в том, что спутники имеют бледные цвета, и по этой причине их трудно разглядеть на фоне облачной атмосферы Юпитера. На самом деле спутник в транзите разглядеть намного труднее, чем его тень (см. ниже).

 Вы можете наблюдать также тень спутника, когда один из них оказывается между Юпитером и Солнцем и отбрасывает тень на планету. Тень — это черное пятно, намного более темное, чем любое облако, перемещающееся на фоне диска планеты.

Спутник, отбрасывающий тень, в это время может быть в транзите, т. е. с точки зрения наблюдателя на Земле он виден на фоне диска Юпитера. Но так бывает не всегда.

Когда Земля находится далеко в стороне от линии “Солнце-Юпитер”, на Юпитер может отбрасывать тень спутник, который не находится перед его диском.

Когда наблюдать спутники

Ежемесячное расписание покрытий, затмений, транзитов и других астрономических событий четырех Галилеевых спутников можно найти в журналах и на Web-сайтах.

Можно найти также ежедневные схемы положений этих четырех спутников относительно диска Юпитера. Чтобы отличить один спутник от другого, нужно сравнить то, что вы видите в телескоп, с картой.

При наблюдении покрытий, затмений, транзитов и других астрономических событий помните следующее.

 Все четыре Галилеевых спутника обращаются вокруг Юпитера в одном направлении. Когда они находятся с ближней к Земле стороны Юпитера (с точки зрения наблюдателя на Земле), то движутся с востока на запад, а когда с обратной — то движутся с запада на восток.

 Поэтому спутник в транзите движется в западном направлении, а спутник, с которым должно произойти покрытие или затмение, — в восточном. Имеются в виду географические направления (восток-запад) в небе над Землей.

При отличных условиях видимости в телескоп с диаметром объектива 15 см и больше можно даже рассмотреть некоторые детали на Ганимеде, самом крупном из Галилеевых спутников. (Более подробно о телескопах говорилось в главе 3.) Но, чтобы рассмотреть детали поверхности, необходимо изображение, полученное межпланетным космическим аппаратом, посетившим систему Юпитера.

 Самые лучшие изображения Юпитера и его спутников получены космическими зондами Galileo и Voyager-1 и Voyager-2, а также космическим телескопом “Хаббл”. Изображения, сделанные Galileo, находятся по адресу

 Юпитер и кометы

Иногда, очень редко, в Юпитер врезается комета, и тогда появляется темное пятно, которое может быть видно несколько месяцев.

Никто не знал об этом до июля 1994 года, когда огромные осколки распавшейся кометы Шумейкера-Леви врезались в Юпитер.

Но астрономы изучили старые сведения о деталях на диске Юпитера и обнаружили несколько подозрительных отметин, которые, вероятно, возникли таким же образом.

Конечно, маловероятно, что вы увидите, как комета врезается в Юпитер, но эту возможность тоже нужно иметь в виду. Поэтому, если вы увидите какое-нибудь новое темное пятно, сделайте заметку об этом и постарайтесь зарисовать его расположение.

Астроном-любитель Дэвид Леви стал известным на весь мир после того, как помог открыть комету Шумейкера-Леви-9, врезавшуюся в Юпитер.

Благодаря своим ясным и понятным отчетам об этом и других астрономических событиях он теперь получает высокие гонорары за лекции, статьи и книги.

И вы тоже можете стать всемирно известным — для этого достаточно внимательно наблюдать за движением небесных объектов в Солнечной системе!

Космический зонд Galileo был запущен к Юпитеру в 1989 году и в декабре 1995 года вышел на орбиту планеты. В течение 8 лет Galileo изучал Юпитер с близкого расстояния.

Несмотря на неудачи, преследовавшие его с самого начала, эта космическая миссия оказалась одной из самых удачных.

Впервые за всю историю космических исследований, ученые получили точные данные об атмосфере Юпитера и о его естественных спутниках — Европе, Ганимеде, Ио и Каллисто.

С борта автоматической исследовательской станции на Землю была передана информация о составе атмосферы планеты и характеристиках ее магнитного поля. Эти данные помогли ученым разгадать многие загадки Юпитера, в частности причину бушующих там гроз. Однако самые сенсационные открытия были сделаны при изучении спутников Юпитера: сделаны снимки извержения вулканов на Ио и ледяной коры Европы.

Полученные данные говорят о том, что поверхность Европы не похожа ни на что другое в Солнечной системе. Она ровная и гладкая и не покрыта кратерами. Ученые предполагают, что это лед. Раз есть лед, значит, есть вода. А там, где есть вода, может быть жизнь.

Данные, полученные Galileo, с высокой вероятностью говорят о том, что на Европе есть гигантский океан глубиной до 50 км.

И, по мнению ученых, в нем может жить кто угодно — от простейших микробов и бактерий до таких существ, которых землянам даже трудно себе представить.

Если бы Galileo оставался на орбите до полной выработки ресурсов, то упал бы на Европу.

И тогда земные микроорганизмы, живущие на космическом корабле, заразили бы маленькую планету и нанесли непоправимый вред живым микроорганизмам, которые, возможно, ее населяют.

Именно поэтому руководство NASA приняло решение сжечь Galileo в атмосфере Юпитера. И 21 сентября 2003 года Galileo сгорел в его атмосфере. Даже во время падения исследовательский аппарат продолжал передавать информацию на Землю

Источник: https://librolife.ru/g4404142

Юпитер – все о космосе

Пятая от Солнца и самая большая планета Солнечной системы. Юпитер, названный в честь царя римских Богов, господствует и среди девяти планет нашей Солнечной системы, соперничая с Солнцем в своём великолепии. Он более чем в два раза тяжелее, чем все другие планеты вместе взятые, и в 318 раз тяжелее Земли. Юпитер благоволит наблюдателям.

Диск планеты достаточно велик для того, чтобы обладатели даже скромных телескопов смогли различать в его атмосфере простейшие структуры облаков. А Галилеевы спутники были бы видны невооружённым глазом, если бы их не затмевало сияние божественного хозяина. Юпитер на небе уступает в яркости только Солнцу, Луне, Венере и изредка Марсу.

В противостояниях блеск планеты почти достигает -3.

Уже пять АМС побывали у этой гигантской планеты. Это американские аппараты «Пионер 10», «Пионер 11», «Вояджер 1», «Вояджер 2» и «Галилео». Последний на рубеже тысячелетий все еще кружился возле Юпитера, собирая важнейшие научные сведения.

Общие сведения

Бог Юпитер — древнеримский двойник древнегреческого громовержца Зевса. Юпитер отдалён о т Солнца на 778,3 млн. км (5,2 а.е.), его экваториальный диаметр — 143 тыс. км, что в 11 раз превышает земной.

Юпитер представляет собой гигантский газовый шар, диаметр которого в десять раз превышает диаметр Земли, составляя одну десятую диаметра Солнца.

Его масса равна 0,1% массы Солнца, а химический состав (по числу молекул) очень близок к составу Солнца: 90% водорода (находящегося на Юпитере в молекулярной форме) и 10% гелия. Вокруг своей оси он, в среднем, обращается за 10 часов.

Причём, так как Юпитер не является твёрдым шаром, а состоит из газа и жидкости, то экваториальные его части быстрее вращаются, чем приполярные области, как это наблюдается у Солнца и других газовых планет. По той же причине Юпитер заметно сжат у полюсов. Ось вращения планеты почти перпендикулярна орбите. Следовательно, на Юпитере нет смены времён года.

Среди следовых газов наиболее существенны водяной пар, метан и аммиак. Под слоем облаков нет никакой твёрдой поверхности. Вместо этого ниже внешних слоёв наблюдается (при увеличении давления с глубиной) постепенный переход от газа к жидкости. Затем следует резкий переход к металлической жидкости, в которой атомы лишены электронов.

В самом центре, возможно, имеется маленькое ядро, остоящее из твёрдых пород и льда. Наличие источника внутренней энергии (тепло, выделившееся в результате гравитационного коллапса при образовании Юпитера) позволяет планете излучать в 1,5 — 2 раза больше тепла, чем она получает от Солнца.

При визуальных наблюдениях диск Юпитера кажется пересечённым чередующимися светлыми зонами и тёмными поясами. Согласно данным, полученным четырьмя космическими зондами, пролетевшими мимо Юпитера в 1973 — 1981 гг. («Пионер-10 и -11, «Вояж-1 и -2, и АМС «Галилео, внутри этих полос наблюдается очень сложная система потоков.

В каждом полушарии имеется пять или шесть таких полос, по направлению совпадающих с ветровыми течениями.

В строении своем Юпитер имеет сходство с небольшой звездой Внутреннее давление в его недрах может достигать 100 миллионов атмосфер. Магнитное поле Юпитера огромно, даже в сравнении с величиной самой планеты — оно простирается на миллионы километров. Если магнитосфера его была бы видима, она имела бы при рассмотрении с Земли угловой размер равный лунному.

Относительно долговечными деталями планеты являются белые или цветные овалы. Наиболее известная и самая заметная из таких деталей Большое красное пятно, которое наблюдается уже около 300 лет. Происхождение этой детали точно не известно. Согласно одной из распространённых теорий утверждается, что она является огромным антициклоном.

Читайте также:  Наблюдение лунных кратеров - все о космосе

Цветные облака находятся в самых высоких слоях Юпитера (их глубина составляет около 0,1-0,3% радиуса планеты). Происхождение их окраски тоже остаётся тайной, хотя, по-видимому, можно утверждать, что она связана со следовыми составляющими атмосферы и свидетельствует о происходящих в ней сложных химических процессах.

Цвет облаков коррелирует с высотой: синие структуры — самые глубокие, над ними лежат коричневые, затем белые.

Красные структуры — самые высокие. Зонд с АМС «Галилео» в 1995 г. парашютировал сквозь верхние слои атмосферы Юпитера, передавая данные относительно состава и физических условий среды. Наземные наблюдения места вхождения зонда показали, что оно, по-видимому, было относительно свободно от облаков.

Этим можно объяснить, почему не было получено почти никаких подтверждений существования ожидаемых трёх слоёв облаков (состоящих на самых больших высотах из кристаллов аммиака, гидросульфида аммония в середине, а внизу — из водяных и ледяных кристаллов). Скорость ветра, достигающая 530 км/час, оказалась даже больше, чем ожидалось.

В то же время содержание гелия составило только около половины ожидаемого. Вероятное объяснение этого явления — увеличение концентрации гелия к центру планеты.

Сопровождаемый своими спутниками и огромной сложной атмосферой, Юпитер обращается вокруг Солнца почти за 12 лет, являясь ближайшей к нему планетой-гигантом. Атмосфера его изобилует молниями и гигантскими вихрями, такими, как Большое Красное Пятно.

Со своей системой спутников Юпитер подобен миниатюрной Солнечной системе, но хотя Юпитер и похож по своему химическому составу на звёзды, он не сияет, подобно Солнцу. Масса Юпитера составляет только одну восьмидесятую долю от необходимой для образования звезды.

Меньшее значение массы не позволяет недрам Юпитера разогреться до нужной температуры.

Зонд обнаружил также интенсивный радиационный пояс. Предположение о существовании слабого кольца вокруг Юпитера было впервые высказано на основании данных, полученных «Пионером-11» в 1974 г. После проведенного «Вояджером» непосредственного фотографирования это предположение подтвердилось.

Основная часть кольца лежит на расстоянии 1,72 — 1,81 радиуса от центра планеты. Исходя из характеристик кольца можно допустить, что оно состоит, главным образом, из частиц микронных размеров.

Постоянным источником пополнения кольца могут быть движущиеся по орбите объекты размером с булыжник, постоянно бомбардируемые быстрыми частицами.

Однако Юпитер и без того сильно влияет на небесные тела Солнечной системы. Некоторые спутники Юпитера, вероятно, являются астероидами, захваченными гравитационным притяжением гиганта.

Пути неосторожно приблизившихся малых планет и комет по тем же причинам искажаются, что иногда приводит к катастрофическим последствиям.

Кометы-неудачники могут быть выброшены Юпитером из Солнечной системы, либо пойманы им в смертельную ловушку, как это случилось с кометой Шумейкера-Леви-9 в 1994-м году.

В настоящее время известно шестнадцать естественных спутников, вращающихся вокруг Юпитера. Они разделяются на четыре группы.

По круговым орбитам в экваториальной плоскости движутся четыре маленьких внутренних спутника (Метида, Адрастея, Амальтея и Теба) и четыре больших галилеевых спутника (Ио, Европа, Ганимед и Каллисто).

Третья группа (Леда, Гималия, Лиситея и Элара) — маленькие спутники на круговых орбитах, наклонённых под углом 25° — 29° к экваториальной плоскости и лежащих на расстоянии 11 — 12 млн. км от Юпитера.

Внешняя группа (Ананке, Карме, Пасифе и Синопе) — маленькие спутники с обратным движением по орбитам. Эти орбиты являются относительно вытянутыми эллипсами с существенным наклонением к экваториальной плоскости и лежат на расстоянии 21 — 24 млн. км от Юпитера. Четыре галилеевых спутника и их движения по орбите можно легко увидеть в маленький телескоп или бинокль.

История открытий

Юпитер — одна из планет, видимых невооруженным глазом, и путь её по ночному небу был наблюдаем тысячи лет.

В 1610-м году, итальянский астроном Галилео Галилей обнаружил четыре самых больших спутника планеты: Ио, Европу, Ганимед, и Каллисто, известные также как Галилеевы спутники. Это было одно из самых ранних астрономических открытий, сделанных с телескопом.

Оно сыграло свою роль, добавив уверенности сторонникам гелиоцентрической системы мира. В те далёкие дни борьба мировоззрений была очень остра.

В течение последующих лет, с улучшением телескопов, становились известными и размер планеты, и существование Большого Красного Пятна, которое представлялось, по началу, островом в гигантском море на поверхности Юпитера.

Земная астрономия всегда продолжала совершенствоваться, мы достигли истинного понимания некоторых «поверхностных» явлений (изменений в расположении деталей, их размеров, цвете), считая их уже атмосферными, а не относящимися к вовсе несуществующей твёрдой поверхности.

С приходом радиоастрономии в науку (а именно в 1955-м году), мы обнаружили, что Юпитер — источник устойчивого высокочастотного радиошума, указывающего на электрическую деятельность гиганта. Юпитер изучается во всех длинах волн. Внизу Вы видите сравнение снимков Юпитера в тепловых и видимых лучах.

Радиоизлучение Юпитера, обнаруженное в 1955г., послужило первым признаком наличия у него сильного магнитного поля, которое в 4000 раз сильнее земного. Следовательно, магнитосфера Юпитера в 100 раз больше земной.

Закручивание электронов вокруг силовых линий порождает радиоизлучение, причём задержанные около планеты электроны дают синхротронное излучение в диапазоне дециметровых волн. Декаметровое излучение, наблюдаемое только от некоторых областей планеты, связано с взаимодействием ионосферы Юпитера со спутником Ио, орбита которого проходит внутри огромного плазменного тора.

Это взаимодействие порождает также полярные сияния. Обнаруженное «Вояджерами» излучение в километровых длинах волн возникает в высоких широтах планеты и в плазменном торе.

В марте 1972-го года была запущена АМС «Пионер 10», для наблюдения пояса астероидов и Юпитера. Долетев до Юпитера в декабре 1973-го года, «Пионер 10» обнаружил интенсивное излучение, исходящее от Юпитера, огромное магнитное поле, предполагающее наличие проводящей ток жидкости в недрах планеты.

Годом позже, однотипный космический аппарат «Пионер 11», пролетал Юпитер на своём пути к Сатурну и передал даже более подробные изображения гигантской планеты. Изучая данные, полученные этим аппаратом, учёные впервые заподозрили наличие у Юпитера колец.

31 марта 1997-го года был выключен космический аппарат «Пионер 10», который ещё в 1973-м году первым преодолел пояс астероидов и достиг Юпитера.

В 1983-м году он пересёк орбиту Нептуна — самой далекой на тот год планеты от Солнца — и направился к границам Солнечной системы. Находящееся в исправности оборудование «Пионера 10» питалось энергией распада помещённых на спутник радиоактивных веществ.

Теперь этот источник иссяк. «Пионер 10» был выключен с расстояния в 9 световых часов, через 25 лет после запуска.

В августе и сентябре 1977-го года, были запущенны два «Вояджера» для изучения внешней части Солнечной системы.

«Вояджеры» побывали возле Юпитера в 1979-м году, подарив нам поразительные, красивые изображения царя планет, обнаружив тысячи деталей, до тех пор неизвестные.

«Вояджеры» поведали нам, что процессы в атмосфере Юпитера — несоизмеримо более грандиозные подобия тех же явлений земной атмосферы. «Вояджеры» подтвердили догадки о кольцах планеты. Юпитер — третья планета, у которой открыли кольца.

Запущенный в октябре 1989-го года с основной задачей изучения Юпитера, космический аппарат «Галилео» вернулся к Земле 8 декабря 1990-го года для совершения обычного гравитационного манёвра.

После он направился к астероиду Гаспра, потом повстречался с другим астероидом — Идой, откуда уже попал в систему Юпитера. «Галилео» был нацелен на самые разнообразные исследования как самой планеты, так и её спутников.

В 1995-м году от аппарата отделился специальный зонд, предназначенный для изучения атмосферы Юпитера.

Образование Юпитера

Юпитер хранит ключи от многих тайн Солнечной системы. Около 4, 5 млрд. лет тому назад, когда Солнечная система формировалась из вращающегося облака газов и пыли, ядро Юпитера, вероятно, зарождалось из льда и камней общей массой, превышающей в 15 раз земную.

Давление солнечного света выталкивало атомы лёгких газов (водорода и гелия) из внутренней по отношению к орбите Юпитера части Солнечной системы, а притяжение больших ледяных ядер нашего гиганта и зарождавшегося по соседству Сатурна постаралось собрать эти атомы возле себя. Из гелия и водорода, в основном, и состоит атмосфера Юпитера сегодня. Юпитер «оброс» самой большой атмосферой среди всех планет, так как центральное внутреннее ядро его раньше достигло необходимой массы. Лик Юпитера, который мы видим, — это верхние слои его атмосферы.

Химический состав, физические условия и строение Юпитера

Если не считать его ядра, Юпитер на 90% — водород и на 10% — гелий по количеству атомов, и в соотношении 3 к 1-му — по массе. В атмосфере обнаружены метан, вода, аммиак и многие другие вещества. В ядре планеты преобладающими являются тяжёлые элементы, в основном, вода. Огромная атмосфера Юпитера создаёт и огромное давление.

Оно увеличивается при приближении к центру планеты. В таких экстремальных условиях газы в атмосфере находятся в необычных состояниях. Находящийся достаточно глубоко водород под давлением атмосферы, возможно, сформировал слой в жидком металлическом состоянии. Это — и не океан, и не атмосфера.

Такой слой водорода должен иметь свойства, которые не укладываются в наше привычное понимание.

В отличие от простого газообразного водорода, жидкий металлический водород способен проводить электрический ток. Устойчивый радиошум и сильное магнитное поле Юпитера излучаются как раз этим слоем металлической жидкости.

При удалении от ядра планеты, когда мы можем без сомнения считать, что речь идёт об атмосфере, мы увидим, что газы ведут себя более знакомым образом, перемещаясь в общих планетных циркуляциях, управляемых изначально вращением планеты. Полагают, что Юпитер имеет три слоя облаков в своей атмосфере. Наверху — облака из оледеневшего аммиака.

Под ними — облака кристаллов сероводорода аммония, а в самом низком слое — собираются водяной лёд и, возможно, жидкая вода.

Читайте также:  Диаграмма герцшпрунга-рассела - все о космосе

Атмосферам Юпитера и других газовых планет свойственны ветры больших скоростей, дующие в пределах широких полос, параллельных экватору планеты. В смежных полосах на Юпитере ветра направлены в противоположные стороны. Эти полосы различимы даже в небольшой телескоп.

Ветры на Юпитере достигают скорости 500 км в час. Изучение атмосферы позволило сказать, что ветры эти также существуют в более низких её слоях, вплоть до тысячи километров от внешних облаков.

Из этого сделан вывод, что они управляются не энергией излучения Солнца, а внутренним теплом планеты, в то время как на Земле все происходит наоборот.

В атмосфере Юпитера возникают чудовищные бури и вихри, одним из которых и является Большое Красное Пятно, замеченное с Земли более 300 лет назад. Большое Красное Пятно (БКП) — овал размером 12 000 на 25 000 км, т.е. это достаточно большая область для того, чтобы вместить в себя две Земли.

Исследования, проведённые в ИК-диапазоне,¬и визуальные наблюдения движений в самом вихре указывают на то, что он — область высокого давления, т.е. антициклон. Облака Пятна расположены значительно выше и более холодны, чем облака вокруг. Схожие структуры обнаружены на Сатурне и Нептуне.

До сих пор неизвестно, как они могут существовать так долго.

Как возникают такие красочные явления — также неизвестно, но учёные полагают, что они обусловлены потоками разогретых газов из недр планеты. Цвета потоков и прочих облаков, вероятно, вызваны их химическим составом.

Например, хотя количество углерода в атмосфере Юпитера очень невелико, атомы этого вещества легко объединяются с атомами водорода и кислорода, образуя целый ряд газов, таких, как угарный, метан и другие органические соединения, вносящие разнообразие цветов.

Оранжевые и коричневые цвета в облаках Юпитера могут быть соотнесены с органическими соединениями, включающими в себя серу и фосфор.

Кольца Юпитера

Из-за препятствий, создаваемых атмосферой и магнитным полем планеты, частицы колец вряд ли остаются в них долго. Вероятность того, что наблюдаемое теперь кольцо — остаток некогда более внушительного, — невелика.

Слишком много времени прошло с тех пор, как возникла планета. Это значит, что кольца должны непрерывно пополняться.

Небольшие спутники Метис и Адрастея, чьи орбиты лежат в пределах колец, — очевидные источники таких пополнений.

Магнитосфера

Юпитер имеет огромное магнитное поле, значительно превышающее по напряжённости Земное. Магнитосфера Юпитера простирается на 650 млн. км за орбиту Сатурна! Но в направлении Солнца оно почти в 40 раз меньше. Даже на таком расстоянии от себя Солнце показывает, кто, на самом-то деле, в доме хозяин. Таким образом, форма магнитосферы Юпитера, как и других планет, далека от сферической.

Спутники Юпитера лежат в области влияния поля, и это, возможно, объясняет относительно недавно открытую вулканическую деятельность Ио.

Напомним, что магнитное поле захватывает заряженные частицы, летящие от Солнца (этот поток называют солнечным ветром), образуя радиационные пояса. Присутствие в таких областях незащищённого специальными средствами живого существа было бы для последнего губительным.

Для космических аппаратов такая обстановка создаёт большие проблемы. Магнитное поле мешает работать приборам, и само по себе, и захваченными им частицами. С этим часто сталкиваются в настоящее время. Поле Юпитера очень сильно.

«Галилео», при изучении атмосферы планеты, обнаружил радиационный пояс, приблизительно в 10 раз мощнее земного, между кольцом Юпитера и самыми верхними атмосферными слоями.

http://www.zvezdi-oriona.ru

Источник: https://www.vseocosmose.ru/?p=387

Юпитер — гигантская планета солнечной системы

Название «Юпитер» носит самая крупная из восьми планет Солнечной системы. Известный с самой глубокой древности, Юпитер и сейчас представляет огромный интерес для человечества. Изучение планеты, её спутников и связанных с ними процессов активно происходит в наше время, и не будет прекращено в будущем.

Происхождение названия

Своё название Юпитер получил в честь одноименно божества древнеримского пантеона. В мифологии римлян Юпитер был верховным богом, владыкой неба и всего мира. Наряду со своими братьями Плутоном и Нептуном он относился к группе главных богов, которые были наиболее могущественными. Прообразом Юпитера был Зевс – главный из олимпийских богов в верованиях древних греков.

Названия в других культурах

В древнем мире планета Юпитер была известна не только римлянам. Например, жители Вавилонского царства отождествляли её со своим верховным богом – Мардуком – и называли «Мулу Баббар», что означало «белая звезда». Греки, как уже ясно, связывали Юпитер с Зевсом, в Греции планета носила название «звезда Зевса». Астрономы из Китая называли Юпитер «Суй Син», то есть «Звезда года».

Интересен тот факт, что наблюдения за Юпитером вели и индейские племена. К примеру, инки называли гигантскую планету «Пирва», что означало «склад, амбар» на языке кечуа. Вероятно, выбранное название было связано с тем, что индейцы наблюдали не только саму планету, но и некоторые из её спутников.

О характеристиках

Юпитер является пятой планетой от Солнца, его «соседями» являются Сатурн и Марс. Планета относится к группе газовых гигантов, которые, в отличие от планет земной группы состоят в основном из газовых элементов, и поэтому имеют низкую плотность и более быстрое суточное вращение.

Размеры Юпитера делают его настоящим исполином.Радиус его экватора составляет 71 400 километров, что больше радиуса Земли в 11 раз. Масса Юпитера равняется 1,8986 х 1027 килограмм, чтопревосходит даже общую массу остальных планет.

Структура

К настоящему времени существует несколько моделей возможного строения Юпитера, но наиболее признанная трёхслойная модель выглядит следующим образом:

  • Атмосфера. Состоит их трёх слоёв: внешний водородный; средний водородно-гелиевый; нижний водородно-гелиевый с другими примесями. Интересен тот факт, что под слоем непрозрачных облаков Юпитера находится водородный слой (от 7 000 до 25 000 километров), который постепенно переходит из газообразного состояния в жидкое, при этом растут его давление и температура. Чётких границ перехода из газа в жидкость не существует, то есть, происходит что-то вроде постоянного «кипения» океана из водорода.
  • Слой металлического водорода. Приблизительная толщина – от 42 до 26 тысяч километров. Металлический водород – это продукт, который образуется при большом давлении (около 1000 000 Ат) и высокой температуре.
  • Ядро. Предполагаемый размер превышает диаметр Земли в 1.5 раза, а масса больше земной в 10 раз. О массе и размерах ядра позволяет судить изучение инерционных моментов планеты.

Кольца

Сатурн оказался не единственным обладателей колец. Позже они были обнаружены у Урана, а затем и у Юпитера. Кольца Юпитера делятся на:

  1. Главное. Ширина: 6 500 км. Радиус: от 122 500 до 129 000 км. Толщина: от 30 до 300 км.
  2. Паутинные. Ширина: 53 000 (кольцо Амальтеи) и 97 000 (кольцо Фивы) км. Радиус: от 129 000 до 182 000 (кольцо Амальтеи) и 129 000 до 226 000 (кольцо Фивы) км. Толщина: 2000 (кольцо Аматери) и 8400 (кольцо Фивы) км.
  3. Гало. Ширина: 30 500 км. Радиус: от 92 000 до 122 500 км. Толщина: 12 500 км.

Впервые о наличие у Юпитера колец сделали предположения советские астрономы, но воочию их обнаружил космический зонд «Вояджер-1» в 1979 году.

История возникновения и эволюции

Сегодня наука располагает двумя теориями возникновения и эволюции газового гиганта.

Теория контракции

За основу этой гипотезы было взято сходство химического состава Юпитера и Солнца. Суть теории: когда Солнечная система только начинала формироваться, в протопланетном диске образовались крупные сгустки, которые затем превратились в Солнце и планеты.

Теория аккреции

Суть теории: формирование Юпитера происходило в течение двух периодов. В первый период происходило формирование твёрдых планет, таких, как планеты земного типа. Во время второго периода имел место процесс аккреции (то есть притяжения) газа этими космическими телами, таким образом образовались планеты Юпитер и Сатурн.

Краткая история изучения

Как становится ясно, впервые Юпитер был замечен ещё народами древнего мира, которые вели за ним наблюдения. Однако, по-настоящему серьёзные исследования планеты-гиганта начались в 17 веке. Именно в это время Галилео Галилей изобрёл свой телескоп и приступил к изучению Юпитера, в ходе которого ему удалось обнаружить четыре самых крупных спутника планеты.

Следующим стал Джованни Кассини, франко-итальянский инженер и астроном. Он впервые заметил на Юпитере полосы и пятна.

В 17 века Оле Рёмер изучил затмение спутников планеты, что позволило ему рассчитать точное положение её спутников и, в конце концов, установить величину скорости света.

Позже появление мощных телескопов и космических аппаратов сделало изучение Юпитера очень активным.

Ведущую роль на себя взяло аэрокосмическое агенство США «НАСА», которое осуществило запуск огромного количества космических станций, зондов и других аппаратов.

С помощью каждого из них были получены важнейшие данные, которые позволили изучить происходящие на Юпитере и его спутниках процессы и понять механизмы их протекания

Некоторые сведения о спутниках

Сегодня науке известно 63 спутника Юпитера – больше, чем у любой другой планеты Солнечной системы. 55 из них относятся к внешним, 8 – к внутренним.Однако, учёные предполагают, что общее число всех спутников газового гиганта может превышать сотню.

Самыми крупными и известными являются так называемые «Галилеевые» спутники. Как понятно из названия, их первооткрывателем стал Галилео Галилей. К ним относятся: Ганимед, Каллисто, Ио и Европа.

Вопрос жизни

В конце 20 века астрофизики из США допустили возможность существования жизни на Юпитере. По их мнению, её образованию могли способствовать аммиак и водяной пар, которые присутствуют в атмосфере планеты.

Однако, серьёзно говорить о жизни на гигантской планете не приходится. Газообразное состояние Юпитера, низкий уровень содержания в атмосфере воды и многие другие факторы делают подобные предположения совершенно голословными.

Интересные факты

  • По яркости Юпитер уступает только Луне и Венере.
  • Человек весом 100 килограмм весил бы на Юпитере 250 килограмм за счёт высокой гравитации.
  • Алхимики отождествляли Юпитер с одним из главных элементов – оловом.
  • Астрология считает Юпитер покровителем остальных планет.
  • Цикл вращения Юпитера занимает всего десять часов.
  • Вокруг Солнца Юпитер обращается за двенадцать лет.
  • Многие спутники планеты названы именами любовниц бога Юпитера.
  • В объём Юпитера поместилось бы более тысячи планет типа Земли.
  • На планете нет смены времён года.

Источник: http://mirkosmosa.ru/solnechnaya-sistema/yupiter/yupiter–gigantskaya-planeta-solnechnoi-sistemy

Ссылка на основную публикацию