Перегретая жидкость – все о космосе

Какая температура в градусах в космосе: есть ли там воздух, с какой высоты начинается космическое пространство

Перегретая жидкость - все о космосе

Человечество относится к космосу, как к чему-то неизведанному и таинственному. Космическое пространство — это пустота, существующая между небесными телами.

Атмосферы твердых и газообразных небесных тел (звезды и планеты) не имеют фиксированного верхнего предела, но постепенно становятся тоньше по мере увеличения расстояния до небесного тела. На определенной высоте это называется началом пространства.

Какая температура в космосе, и прочие сведения будут рассказаны в этой статье.

Общее понятие

В космическом пространстве существует высокий вакуум с низкой плотностью частиц. Воздух в космосе отсутствует. Из чего состоит космос? Это не пустое пространство, оно содержит:

  • газы;
  • космическую пыль;
  • элементарные частицы (нейтрино, космические лучи);
  • электрические, магнитные и гравитационные поля;
  • также электромагнитные волны (фотоны).

Абсолютный вакуум, или почти полный, делает пространство прозрачным, и позволяет наблюдать чрезвычайно удаленные объекты, такие как другие галактики. Но туман межзвездной материи также может серьезно затруднить представление о них.

Важно! Понятие пространства не следует отождествлять со Вселенной, которая включает в себя все космические объекты, даже звезды и планеты.

Поездки или перевозки в космическом пространстве или через него, называются космическими поездками.

Где начинается космос

Нельзя точно сказать с какой высоты начинается космическое пространство. Международная авиационная федерация определяет край пространства на высоте 100 км над уровнем моря, линия Кармана.

Нужно, чтобы летательный аппарат двигался с первой космической скоростью, тогда будет достигнута подъемная сила. ВВС США определили высоту в 50 миль (около 80 км), как начало пространства.

Обе высоты предложены в качестве пределов верхних слоёв атмосферы. На международном уровне определения края пространства не существует.

Линия Кармана Венеры расположена примерно в 250 км высоты, Марса — около 80 километров. У небесных тел, которые не имеют, или почти не имеют никакой атмосферы, такие как Меркурий, Луна Земли или астероид, пространство начинается прямо на поверхности тела.

При повторном входе космического аппарата в атмосферу определяют высоту атмосферы для расчета траектории так, чтобы к точке повторного входа ее влияния было минимальным. Как правило, повторно начальный уровень, равен или выше, чем линия Карманы. НАСА использует значение 400000 футов (около 122 км).

Какое давление и температура в космосе

Абсолютный вакуум недостижим даже в космосе. Так как найдётся несколько атомов водорода на определённый объем. При этом, величины космического вакуума недостаточно, чтобы человек лопнул, как воздушный шарик, который перекачали. Не произойдет это той простой причине, что наше тело достаточно прочное, чтобы удержать свою форму, но это его всё равно не спасёт организм от смерти.

И дело тут не в прочности. И даже не в крови, хоть в ней есть примерно 50% воды, она находится в закрытой системе под давлением. Максимум – вскипит слюна, слёзы, и жидкости, что смачивают альвеолы в лёгких. Грубо говоря, человек погибнет от удушья. Даже на относительно малых высотах в атмосфере условия враждебны человеческому телу.

Ученый ведут спор: полный вакуум или нет в космосе, но все-таки склоняются ко мнению, полное значение недостижимо за счет молекул водорода.

Высота, в которой атмосферное давление соответствует давлению паров воды при температуре человеческого тела, называется линией Армстронга. Она расположена на высоте около 19.14 км. В 1966 году астронавт испытывал скафандр и был подвержен декомпрессии на высоте 36500 метров. За 14 секунд он отключился, но не взорвался, а выжил.

Максимальные и минимальные значения

Исходная температура в открытом космосе, установленная фоновым излучением Большого Взрыва, составляет 2.73 кельвина (К), что равно -270.45 °C.

Это самая низкая температура в космосе. Само пространство не имеет температуры, а только материя, которая в нем находится, и действующая радиация. Если быть более точным, то абсолютный ноль — это температура в -273.15 °C. Но в рамках такой науки как термодинамика, это невозможно.

Из-за радиации в космосе и держится температура в 2.7 К. Температура вакуума измеряется в единицах кинетической активности газа, как и на Земле. Излучение, заполняющее вакуум, имеет другую температуру, чем кинетическая температура газа, а это означает, что газ и излучение не находятся в термодинамическом равновесии.

Абсолютный ноль — это и есть самая низкая температура в космосе.

Локально распределенная в пространстве материя может иметь очень высокие температуры. Земная атмосфера на большой высоте достигает температуры около 1400 К.

Межгалактический плазменный газ с плотностью менее одного атома водорода на кубический метр может достигать температур нескольких миллионов К. Высокая температура в открытом космосе обусловлена ​скоростью частиц.

Однако общий термометр будет показывать температуры вблизи абсолютного ноля, потому что плотность частиц слишком мала, чтобы обеспечить измеримую передачу тепла.

Вся наблюдаемая вселенная заполнена фотонами, которые были созданы во время Большого Взрыва. Он известен как космическое микроволновое фоновое излучение. Имеется большое количество нейтрино, называемое космическим нейтринным фоном.

Текущая температура черного тела фонового излучения составляет около 3-4 К. Температура газа в космическом пространстве всегда является по меньшей мере температурой фонового излучения, но может быть намного выше.

Например, корона Солнца имеет температуры, превышающие 1.2-2.6 миллионов К.

Человеческое тело

С температурой связано другое заблуждение, которое касается тела человека. Как известно, наше тело в среднем состоит на 70% из воды. Теплу, которое она выделяет в вакууме, некуда деться, соответственно, теплообмен в космосе не происходит и человек перегревается.

Но пока он успеет это сделать, то умрёт от декомпрессии. По этой причине, одной из проблем с которой сталкиваются космонавты – это жара. А обшивка корабля, который находится на орбите под открытым солнцем, может сильно нагреваться. Температура в космосе по Цельсию может составить 260 °C на металлической поверхности.

Твердые тела в околоземном или межпланетном пространстве испытывают большое излучающее тепло на стороне, обращенной к солнцу. На солнечной стороне или, когда тела находятся в тени Земли, они испытывают сильный холод, потому что выделяют свою тепловую энергию в космос.

Например, костюм космонавта, совершающего выход в пространство на Международной космической станции, будет иметь температуру около 100 °C на стороне, обращенной к солнцу.

На ночной стороне Земли солнечное излучение затеняется, а слабое инфракрасное излучение земли заставляет скафандр остыть. Его температура в космосе по Цельсию будет составлять примерно до -100 °C.

Теплообмен

Важно! Теплообмен в космосе возможен одним единственным видом – излучением.

Это хитрый процесс и его принцип используется для охлаждения поверхностей аппаратов. Поверхность поглощает лучистую энергию, что падает на неё, и в то же время излучает в пространство энергию, которая равна сумме поглощённой и подводимой изнутри.

Неизвестно точно сказать, каким может быть давление в космосе, но оно очень маленькое.

В большинстве галактик наблюдения показывают, что 90% массы находится в неизвестной форме, называемой тёмной материей, которая взаимодействует с другим веществом через гравитационные, но не электромагнитные силы.

Большая часть массовой энергии в наблюдаемой вселенной, является плохо понимаемой вакуумной энергией пространства, которую астрономы и называют тёмной энергией. Межгалактическое пространство занимает большую часть объема Вселенной, но даже галактики и звёздные системы почти полностью состоят из пустого пространства.

Исследования

Люди начали физическое исследование космоса в течение 20-го века с появлением высотных полетов на воздушном шаре, а затем пилотируемых ракетных запусков.

Земная орбита была впервые достигнута Юрием Гагариным из Советского Союза в 1961 году, а беспилотные космические аппараты с тех пор добрались до всех известных планет Солнечной системы.

Из-за высокой стоимости полёта в космос, пилотируемый космический полет был ограничен низкой земной орбитой и Луной.

Космическое пространство представляет собой сложную среду для изучения человека из-за двойной опасности: вакуума и излучения.

Микрогравитация также отрицательно влияет на физиологию человека, которая вызывает, как атрофию мышц, так и потерю костной массы.

В дополнение к этим проблемам здравоохранения и окружающей среды, экономическая стоимость помещения объектов, в том числе людей, в космос очень высока.

Насколько холодно в космосе? Может быть температура еще ниже?

Температуры в разных точках вселенной

Вывод

Поскольку свет имеет конечную скорость, ограничиваются размеры непосредственно наблюдаемой вселенной. Это оставляет открытым вопрос о том, является ли Вселенная конечной или бесконечной.

Космос продолжает быть загадкой для человека, полной феноменов. На многие вопросы современная наука пока не может дать ответы.

Но какая температура в космосе, уже удалось выяснить, а какое давление в пространстве — со временем удастся измерять.

Источник: https://uchim.guru/astronomiya/kakaya-temperatura-v-kosmose.html

Температура в космосе по Цельсию. Какая температура в открытом космосе? :

Какая температура в космосе за пределами земной атмосферы? А в межзвездном пространстве? А если мы выйдем за пределы нашей галактики, будет ли там холоднее, чем внутри Солнечной системы? И можно ли вообще говорить о температуре применительно к вакууму? Попробуем разобраться.

Что такое тепло

Для начала необходимо понять, чем же в принципе является температура, как образуется тепло и отчего возникает холод. Чтобы ответить на эти вопросы, необходимо рассмотреть строение материи на микроуровне. Все вещества во Вселенной состоят из элементарных частиц – электронов, протонов, фотонов и так далее. Из их сочетания образуются атомы и молекулы.

Микрочастицы не являются неподвижными объектами. Атомы и молекулы постоянно колеблются. А элементарные частицы и вовсе перемещаются со скоростями, близкими к световым. Какая тут связь с температурой? Прямая: энергия движения микрочастиц – это и есть тепло. Чем сильнее колеблются молекулы в куске металла, например, тем горячее он будет.

Что такое холод

Но если тепло – это энергия движения микрочастиц, то какой будет температура в космосе, в вакууме? Конечно, межзвездное пространство не совсем пустое – сквозь него движутся фотоны, несущие свет. Но плотность материи там намного ниже, чем на Земле.

Чем меньше атомы сталкиваются друг с другом, тем слабее греется вещество, которое из них состоит. Если находящийся под большим давлением газ выпустить в разреженное пространство, его температура резко понизится.

На этом принципе основана работа всем известного компрессорного холодильника.

Таким образом, температура в открытом космосе, где частицы находятся очень далеко друг от друга и не имеют возможности сталкиваться, должна стремиться к абсолютному нулю. Но так ли это на практике?

Как происходит передача тепла

Когда вещество нагревается, его атомы испускают фотоны. Это явление тоже хорошо всем знакомо – накалившийся металлический волосок в электрической лампочке начинает ярко светиться. При этом фотоны переносят тепло. Таким образом энергия переходит от горячего вещества к холодному.

Космическое пространство не только пронизано фотонами, которые испускают бесчисленные звезды и галактики.

Вселенная заполнена также так называемым реликтовым излучением, которое образовалось на ранних этапах ее существования. Именно благодаря этому явлению температура в космосе не может опуститься до абсолютного нуля.

Даже вдали от звезд и галактик материя будет получать рассеянное по Вселенной тепло от реликтового излучения.

Что такое абсолютный нуль

Никакое вещество нельзя охладить ниже определенной температуры. Ведь остывание – это потеря энергии. В соответствии с законами термодинамики в определенной точке энтропия системы достигнет нуля. В этом состоянии вещество уже не сможет терять энергию. Это и будет предельно возможная низкая температура.

Абсолютный нуль – это минус 273,15 °C или ноль по шкале Кельвина. Теоретически такую температуру можно получить в замкнутых системах. Но на практике нигде во Вселенной невозможно создать область пространства, на которую не действовали бы никакие внешние силы.

Какая температура в космосе

Наша Вселенная не однородна. Ядра звезд раскалены до миллионов градусов. Но большая часть пространства, конечно же, значительно холодней. Если говорить о том, какая температура в открытом космосе, то она всего на 2,7 градуса выше значения абсолютного нуля и составляет минус 270,45 по Цельсию.

Это тепло возникает за счет уже упоминавшегося реликтового излучения. Но Вселенная расширяется, а это означает, что ее температура будет постепенно снижаться.

Теоретически через триллионы лет вещество в ней может охладиться до минимально возможной отметки.

Но вопрос о том, закончится ли расширение Вселенной “тепловой смертью”, либо же она станет более разнородной и структурированной из-за действия сил гравитации, остается предметом дискуссий.

В местах скопления материи теплее, но ненамного. Облака газа и пыли, встречающиеся между звездами нашей галактики, имеют температуру от 10 до 20 градусов выше абсолютного нуля, то есть минус 263-253 °C. И только вблизи звезд, внутри которых протекают реакции ядерного синтеза, можно найти достаточно тепла для комфортного существования белковых форм жизни.

Температура на околоземной орбите

А какова температура вблизи нашей планеты? Стоит ли космонавтам, отправляющимся на МКС, запасаться теплыми вещами? На околоземной орбите металл под прямыми лучами солнца прогревается до 160 градусов Цельсия.

В то же время в тени предметы будут остывать до минус 100 °C.

Поэтому для выхода в открытый космос используются скафандры с надежной теплоизоляцией, нагревателями и системой охлаждения, защищающие человека от столь серьезного перепада температур.

Не менее экстремальные условия на поверхности Луны. На ее освещенной стороне жарче, чем в Сахаре. Температура там может превысить 120 °C.

Но на темной стороне она падает приблизительно до минус 170 °С. Во время высадки на Луну американцы использовали скафандры, в которых было 17 слоев защитных материалов.

Терморегуляция обеспечивалась специальной системой трубочек, в которых циркулировала вода.

Температура на других планетах Солнечной системы

На климат большое влияние оказывает наличие либо отсутствие атмосферы. Это второй по значению фактор после расстояния до Солнца. Понятно, что по мере удаления от светила температура в космосе падает. Но наличие атмосферы позволяет удержать часть тепла благодаря парниковому эффекту.

Наиболее яркой иллюстрацией этого явления может служить климат Венеры. Температура на ее поверхности достигает 477 °C. Благодаря атмосфере Венера жарче, чем Меркурий, который находится ближе к Солнцу.

Средняя температура поверхности Меркурия 349,9 °C днем и минус 170,2 °C ночью.

Марс может нагреваться до 35 градусов Цельсия летом на экваторе и охлаждаться до -143 °C зимой в районе полярных шапок.

На Юпитере температура достигает -153 °C.

Но чем дальше от Солнца, тем холоднее. Уран уже не спасает даже атмосферный слой. Он хоть и задерживает тепло, не давая ему сразу уходить в открытый космос, но температура там все равно падает до минус 224 °C.

Но холоднее всего на Плутоне. Температура его поверхности – минус 240 °C. Это лишь на 33 градуса выше абсолютного нуля.

Самое холодное место в космосе

Выше было сказано, что межзвездное пространство прогревается реликтовым излучением, а потому температура в космосе по Цельсию не опускается ниже минус 270 градусов. Но оказывается, могут существовать и более холодные участки.

В 1998 году телескоп Хаббл обнаружил газо-пылевое облако, которое стремительно расширяется. Туманность, названная Бумерангом, образовалась вследствие явления, известного как звездный ветер.

Это очень интересный процесс.

Суть его состоит в том, что из центральной звезды с огромной скоростью “выдувается” поток материи, которая попадая в разреженное космическое пространство охлаждается вследствие резкого расширения.

По оценкам ученых, температура в туманности Бумеранг составляет всего один градус по шкале Кельвина, или минус 272 °C. Это самая низкая температура в космосе, которую на данный момент удалось зафиксировать астрономам. Туманность Бумеранг находится на расстоянии 5 тысяч световых лет от Земли. Наблюдать ее можно в созвездии Центавра.

Самая низкая температура на Земле

Итак, мы выяснили, какая температура в космосе и какое место самое холодное. Теперь остается узнать, какие самые низкие температуры были получены на Земле. А произошло это в ходе недавних научных экспериментов.

В 2000 году исследователи из Технологического университета в Хельсинки охладили кусок металла родия почти до абсолютного нуля. В ходе эксперимента была получена температура равная 1*10-10 Кельвина. Это всего на 0,000 000 000 1 градуса выше нижнего предела.

Целью исследований было не только получение сверхнизких температур. Основная задача заключалась в изучении магнетизма ядер атомов родия. Это исследование было весьма успешным и принесло ряд интересных результатов. Эксперимент помог понять, как магнетизм влияет на сверхпроводящие электроны.

Достижение рекордно низких температур состоит из нескольких последовательных этапов охлаждения. Вначале с помощью криостата металл охлаждается до температуры 3*10-3 Кельвина. На следующих двух этапах используется метод адиабатического ядерного размагничивания. Родий охлаждается до температуры сначала 5*10-5 Кельвина, а затем достигает рекордно низкой температуры.

Источник: https://www.syl.ru/article/159962/new_temperatura-v-kosmose-po-tselsiyu-kakaya-temperatura-v-otkryitom-kosmose

Какая температура в открытом космосе?

Вопрос, поставленный в заголовке, в принципе является некорректным, ведь космос представляет собой пустоту, то есть пространство, где нет ничего. А температуру «ничего» измерить невозможно. Температура — следствие движения (активности) молекул, из которых состоят все материальные объекты. А нет материи – нет и температуры.

Теоретически ноль, а практически…

Космос лишь теоретически является вакуумом, ведь Вселенная согласно общепринятой научной (космологической) модели возникла в результате Большого взрыва, что обусловило реликтовое (космическое электромагнитное) излучение.

Его спектр отвечает абсолютно черному телу, имеющему температуру по Кельвину – 2,725 (по Фаренгейту — минус 454,8°, по Цельсию – минус 270,425°).

Электромагнитное излучение в космосе – это дождь фотонов (безмассовых элементарных частиц), присутствующих в терагерцевом, инфракрасном, ультрафиолетовом, рентгеновском и гамма-излучении, а также в радиоволнах.

В наибольшей степени свойствами абсолютно черного тела обладает Солнце, его наружные слои имеют температуру около 6200 К, то есть температура в космосе может разниться.

Определенная роль в «температурном режиме» космоса принадлежит также планетам и их спутникам, астероидам, метеоритам и кометам, космической пыли и молекулам газов. Поэтому во Вселенной могут быть температурные отклонения.

К примеру, в туманности Бумеранг (созвездие Центавра) благодаря телескопу «Хаббл» — автоматической обсерватории на орбите Земли была зафиксирована самая низкая космическая температура – 1 К (минус 272 градуса по шкале Цельсия).

Ее причиной является «звездный ветер» (поток материи), идущий от центральной звезды.

О наличии космической пыли свидетельствует ночное свечение, обнаруженное астрономами в плоскости зодиакальных созвездий. Свечение, как установили ученые, — это свет, отражаемый от частиц космической пыли.

Материальными являются и космические лучи. В основном их структура состоит из стремительных ядер водородных и гелиевых атомов, а также более тяжелых ядер, к примеру, железа и никеля.

Таким образом, сколько градусов в космосе? Теоретически — 0° по шкале Кельвина или минус 273,15°С. На самом же деле, учитывая реликтовое излучение — 2,725 К (минус 270,425°С). Но это, если не брать во внимание тепло, излучаемое звездами и планетами.

Холодно — жарко

Отвечая на вопрос: «Какая температура в космосе», нужно отметить, что на все тела, находящиеся в космосе, действует не только смертельный для человека холод, но и губительная жара. Простейший пример тому – космический корабль. На его солнечной стороне – жарко, на теневой – холодно.

И чем ближе или дальше звездолет от небесного светила, тем больше разница температур.

Положение Солнца влияет и на климат Земли. Одна теория гласит, что вращаясь вокруг Солнца, планета то приближается, то удаляется от него, поэтому происходит и смена времен года: зиму сменяет лето и наоборот.

Однако на экваторе никогда не бывает зимы.

Дело в том, что земля вращается в наклонном положении относительно Солнца (23°27') и по-разному разворачивается к нему: то северным, то южным полушарием. Соответственно, лучи Солнца падают отвесно или под углом — в зависимости от этого земная поверхность нагревается больше или меньше.

Источник: https://www.techcult.ru/space/2335-kakaya-temperatura-v-kosmose

Терморегуляция и Орбитальные станции. Часть 1

“Кроме самого двигателя весь корабль представляет из себя громадную грелку.

Например, тепловые радиаторы космического корабля «Спейс Шаттл» вмонтированы во внутреннюю поверхность створок его грузового люка.

Поэтому на околоземной орбите «Спейс Шаттл» всегда находится с открытыми створками грузового люка, это не связано только с грузовыми операциями, но и является рабочим положением створок.”

Кроме того, во время штатного орбитального полета (если не было специфических операций вроде ремонтов спутников-телескопов и/или стыковок с орбитальными станциями) челнок обычно ориентировали «спиной» к Земле. Во-первых, на Землю смотрят и аппаратный (грузовой) отсек со всеми приборами и кабина экипажа (большинство задач орбитальных аппаратов земные).

Во-вторых, этим достигается лучшая защита людей и оборудования от солнечной и космической радиации (их принимает термоизоляционное жаропрочное брюхо челнока, облицованное плиткой), но главное то, что спрятаны от солнца вот эти радиаторы-излучатели (ИК излучение от них идет в сторону Земли, а сами они максимально изолированы от солнечного нагрева) (прим. СД).

Мощность охлаждающей системы «Спейс Шаттла» составляет всего около 15 кВт сбрасываемого тепла, но размеры радиаторов уже сравнимы с размером космического корабля. Однако с ростом мощности охлаждения площади радиаторов растут гораздо быстрее.

Даже сегодня на Международной космической станции площадь радиаторов для сброса тепла уже сравнима с площадью солнечных батарей.

Желтыми стрелочками показаны тепловые радиаторы Международной космической станции, оранжевым эллипсом — насос аммиачного хладагента.

Радиаторы современной Международной космической станции работают на аммиаке. Испаряясь при комнатной температуре (при давлении в 10 атмосфер) аммиак хорошо работает в холодильном цикле, охлаждая нагревающуюся на солнце и за счет своих внутренних процессов МКС. Внутренний контур МКС использует для охлаждения обычную воду, которая охлаждается испарением аммиака из внешнего контура.

На сегодняшний день такие низкотемпературные радиаторы позволяют МКС скидывать в окружающее пространство около 70 кВт тепловой мощности с возможностью увеличения теплового сброса ещё на 14 кВт.

Бортовые системы МКС на дневной стороне непрерывно подворачивают панели солнечных батарей и радиаторов, ориентируя первые на максимальный прием солнечного света, а вторые на минимальный.

Минимизировать солнечный нагрев самих радиаторов должен и их белый цвет (такой же, как и «спинка» орбитальных челноков) – эстетика здесь на последнем месте.

На теневой же стороне станция ориентирует панели батарей и радиаторов к плоскости орбиты подобно крыльям и килям летящего самолета.

Здесь первостепенной задачей на 45 темных минут становится – минимизировать сопротивление ничтожных остатков атмосферы, которые на высоте 400 км всё же есть, и их тормозящий эффект виток за витком постепенно сказывается, что приводит к замедлению и снижению высоты орбиты. Станция шевелит «крыльями» медленно, но непрерывно (прим СД).

Однако, как вы наглядно видите, даже такая маломощная низкотемпературная система имеет весьма внушительные размеры относительно самой станции. Что же говорить о случае, если избыточная тепловая мощность на борту составит мегаватты, а то и десятки и сотни мегаватт? Ведь тогда радиаторы надо будет увеличивать просто-таки в геометрической прогрессии!

И вот тут нам на помощь приходит механика потери теплоты за счет излучения. Вот обобщенная формула для работы любого радиатора:

∂Q/∂t = Re * (5,67×10-8) * Ra * Rt4

Это — наглядная запись закона Стефана-Больцмана, где 5,67×10-8 постоянная Стефана-Больцмана, Re— эффективность работы радиатора (теоретический максимум = 1, отсюда, кстати, следует и максимальное число радиаторов на космическом корабле, равное четырем, чтобы тупо не греть друг друга излучением), Ra— площадь радиатора, а Rt — его температура.

Нетрудно видеть, что количество «выдавливаемого» в космос тепла пропорциональна первой степени его площади, но четвертой степени — его температуры. То есть, увеличение абсолютной температуры радиатора в 2 раза, выраженное в градусах Кельвина (не Цельсия!) приведёт к увеличению теплоотдачи в 16 раз!

Скорее всего, радиаторы будущего космического корабля будут светиться темно-вишневым цветом, поскольку их температура будет превышать 3000 К, вместо 350-400 К для радиаторов современных космических кораблей.

Больше температуры, нежели 3000 К, представить себе гораздо сложнее: самый тугоплавкий металл, вольфрам имеет температуру плавления в 3442 °C, а самый тугоплавкий материал, графит плавится при 3845-3890 °C.

Понятное дело, до температуры плавления ни вольфрам, ни графит доводить нельзя — для сохранения конструкционной прочности радиатора его рабочая температура всё-таки должна быть на 600-800 градусов ниже температуры плавления его конструкционных материалов.

Это позволит поднять теплоотдачу радиаторов на единицу площади где-то в 3000 раз (как мы помним, четвёртая степень температуры) и хоть как-то увязать размер потребных радиаторов с размерами самого космического корабля, чтобы не создавать громадные, километровые по площади панели.

Система терморегуляции малоразмерных космических аппаратов.

Цитата из статьи, описывавшей миссию Союз-Аполлон (ЭПАС) 1975 года: «В обоих кораблях использовалась система терморегуляции с теплоносителем и радиаторами.

Покрашенные в белый цвет для лучшего излучения тепла (точнее сказать:для меньшего приема солнечного тепла (на излучающую способность радиатора его наружный цвет не влияет) (прим.

СД)) радиаторы стояли на сервисных модулях и даже выглядели одинаково»

Так-то оно так, НО:

  1. Оба жилых отсека Союза были покрыты термоизоляционной и радиозащитной шубой «двухслойной» (стекловолокно-вакуум). На современных версиях Союз-Т эта шуба покрывает уже и часть аппаратного отсека до самого пояса радиаторов (фото ниже). Жарится на солнце уже она, а не весь корабль. Она же и основную массу солнечного нейтронного излучения тормозит. Аполлон такой не имел.
  2. За шубой собственно металлическая (алюминиевые и магниевые сплавы) стенка отсеков с прослойками термоизоляционных композитных материалов в два с половиной раза толще стенок командного модуля Аполлонов (соты профилированных панелей 20-30 мм). А у командного отсека Союза еще и абляционная защита в сантиметры толщиной (у Аполлона она, по данным НАСА, была не более 44 мм). А толстые прочные стенки позволяют иметь земную атмосферу внутри корабля с земным же давлением (в Аполлонах была кислородная с давлением 0,3 от атмосферного). Атмосфера ведь тоже щит от агрессивного излучения. И чем она плотнее – тем прочнее этот щит для земных организмов. Попробуй Солнышко быстро прогреть-пропечь весь этот многослойный пирог!
  3. 3.Союз, хоть и создавался на перспективу как лунный корабль, но к Луне с людьми всё же не летал, и даже за защитную магнитосферу Земли (за пояса ван Аллена) не выходил. И каждые полчаса в земную тень нырял. Аполлон же вроде как 8 раз к Луне летал без всякой тени (ну разве что ненадолго за Луной от солнышка прятался на селеноцентрической орбите, пока попрыгунчики по Луне скакали).
  4.  Бортовые системы Союза частично питались от солнечных батарей, что также уменьшало внутренний нагрев корабля при превращении входной энергии в электрическую-световую-механическую всех этих лампочек-приборов-механизмовс неизбежным тепловыделением. Аполлон солнечных батарей отродясь не имел и всю энергию якобы получал от химических (водородно-кислородных) батарей т.е. та же химическая реакция, что и в маршевых двигателях шаттлов и вторых-третьих ступеней некоторых поздних советских космических ракет (советского челнока Энергия-Буран, например). С такой же теплоотдачей (285,75 МДж/моль тепла – это самая теплая химическая реакция в природе). В батареях эта реакция идет с применением катализаторов (Pt, Pel, Ni) уже изначально при t°- 80-130°С. И если в ракетных двигателях горящий под 3,5 тысяч градусов водород греет камеры сгорания и сопла двигателей, и сбрасывает тепловую энергию в пространство вместе с реактивной струей раскаленного водяного пара, образовавшегося при горении, то в батареях тепло от этого процесса (хоть и не столь взрывного, и горячего как в движках), никуда не девается – так и остается внутри системы корабля. Более того, по данным НАСА вода, образовывавшаяся при работе этой водородной электростанции, использовалась для технических и бытовых нужд корабля и астронавтов. В виде кипятка, разумеется, ибо трудно представить на выходе горения водорода (пусть даже медленного каталитического) хладный горный родничок!

И при всем при этом, оба корабля имели практически одинаковые радиаторы-излучатели в виде белого пояса в хвостовой части кораблей. И относительный их объем (точнее относительная излучающая площадь по отношению к общей площади корабля) практически одинаковы – достаточно на фото взглянуть.

Ну, тогда либо это были чудесные радиаторы с невообразимой излучающей способностью, секрет изготовления которых утерян или сокрыт от американских конструкторов шаттлов и прочих космических аппаратов. Либо Аполлоны (ну и разумеется их лунные модули) регулярно выбрызгивали в пространство десятки (а то и сотни) литров воды или иного хладагента.

Третьего способа избавления в вакууме от лишнего тепла современная Физика пока еще не знает. Второй метод (выброс части хладагента) вроде как предусмотрен в виде экстренной меры терморегулирования на всех пилотируемых аппаратах, но это действительно экстренная мера, ибо на более-менее продолжительный полет просто не напасешься хладагентов.

А еще цену каждого грамма, выведенного на орбиту, посчитать – он золотым будет! Американцы ради Великой Цели «Обскакать Русского Медведя», за Ценой конечно, не постоят (надо будет – еще долларов напечатают), но всё жекак-то нет свидетельств, что Аполлоны и их лунные «пепелацы» регулярно выбрасывали кометные хвосты жидкостей, превращавшихся на глазах в хлопья льда.

Такое красивое космическое зрелище они обязательно бы засняли на камеру хотя бы в съемочном павильоне Стенли Кубрика.  

Фото “аполлониста”, высунувшегося из разгерметизированного командного модуля, сделанное непонятно кем и непонятно откуда.

(Что за Аполлон? К чему пристыкован? К лунному модулю? К переходному шлюзу с Союз-19? К причальной секции станции Скайлэб? И для чего “лётчик” высунулся из люка? Стыковку снаружи корректировал: “Правей-левей, вира-майна”? Конструкция люка открывающегося наружу, видимо, была разработана специально для быстрой разгерметизации при прогулках в открытый космос – щеколду отодвинул и крышка сама откинулась под давлением кислорода, вылетающего в пустоту! Два дела сразу – экономия времени…  Как изящно астронавт руку в локте в своем надутом скафандре согнул – нынешние так не могут! И как Аполлон сохранил девственный вид обшивки после старта? Их ведь не паковали целиком в футляр обтекателя!). Очень наглядное фото! Все чудеса корабля Аполлон в одной картинке.

Это фото без чудес: Челнок Атлантис, пристыкованный к МКС. Никто никуда не высовывается, да и некуда высунуться – шлюзовая камера шаттла одновременно является и его стыковочным узлом. Как и головная (орбитальная) секция корабля Союз (следующее фото). 

Союз-ТМА пристыкован к МКС. Видно что солнцезащитная шуба этой модели (в отличие Союз-19) удлинилась “до колен”. А пояс радиаторов покрывает уже практически весь сервисный модуль корабля почти “до пяток”.  

Как видим, космос вблизи нашего солнышка скорее «горячий», чем «холодный» и проблема охлаждения космических кораблей стоит острее проблем их обогрева. Беспилотные аппараты не столь привередливы к климат-контролю как космонавты, но обогреватели и радиаторы железякам тоже нужны.

Особенно их нежным электронным потрохам и прочим тонким системам.

Лунаход-1, например, по утверждению наших специалистов вышел из строя, черпанув в свою «кастрюлю», внутренние стенки которой являлись радиатором-излучателем, немножечко лунного реголита на каком-то склоне в момент то ли закрытия, то ли открытия крышки «кастрюли», внутренняя поверхность которой являлась солнечной батареей. Этой пыли, засорившей поверхность радиатора и нагревавшейся лунным днем до двухсот с лишним градусов, хватило, чтобы угробить всю систему терморегуляции аппарата и привести к его поломке в результате перегрева.

Схема Луноход-1. (Панели радиатора выстилают всю внутреннюю площадь стенок “кастрюли”.

Дизайн самой “кастрюли” выполнен в виде воронки (перевернутого конуса) чтобы панели радиатора в процессе сброса тепла не грели сами себя (свои противоположные секции) инфракрасным излучением – основной вектор ИК излучения направлен под углом вверх. Этот дизайн обеспечивал и сокрытие большей части радиатора от солнечных лучей большую часть времени лунного дня.

Летевшие к холодноватому Марсу аппараты тоже не могли обойтись без внутренней терморегуляции и радиаторов-излучателей.

Схема аппаратов Марс-2 и Марс-3. (под №5 – панели радиаторов системы терморегулирования)

 И разумеется, в них нуждаются все крупногабаритные спутники, набитые сложной аппаратурой и энергосистемами. Они тоже ощетиниваются солнечными батареями и обязательно радиаторами. Еще и корпус многих из них покрывают золотистой или серебристой светоотражающей фольгой. Самый яркий пример такого аппарата – легендарный орбитальный телескоп Хаббл.

Спутник-телескоп Хаббл (снимки из кабины шаттла)

Схема головной части телескопа Хаббл (CCD-Radiator – показана одна из панелей радиатора с изменяемым углом атаки в зависимости от положения Солнца.. Основная идея дизайна панелей та же что и на МКС – подворачивая панели минимизировать их нагрев прямыми солнечными лучами.  

Продолжение >>>

Источник: https://kosmos-x.net.ru/publ/kosmos/termoreguljacija_i_orbitalnye_stancii_chast_1/12-1-0-283

Наука над земным шаром, часть 1

В июле 2012 года закончилась полугодовая вахта на МКС астронавта Дональда Петтита. На орбите в свободное время Дон записывал научно-популярные видео с экспериментами в невесомости под названием “Наука над земным шаром” (Science off the Sphere).

Эксперименты были очень необычные и красивые, помню, с каким удовольствием смотрел их пять лет назад. Может быть, из-за юбилейной даты вспомнив о них снова, с удивлением обратил внимание, насколько мало просмотров на YouTube собрали эти ролики.

Что ж, тогда для большего числа читателей они будут новинкой, и напомнить о них будет полезно.

Ролики выходили как научная-популярная передача, с интервалом неделя-две, и в конце каждого ролика Дон задавал зрителям тематический вопрос.

Ответы под спойлерами, чтобы вы могли спокойно подумать (есть очень сложные вопросы). Речь в роликах, конечно же, английская, но можно читать автоматический перевод субтитров, и я предварил видео комментариями/пояснениями.

На МКС можно взять небольшое количество личных вещей, и вязальные спицы, скорее всего, отправились в космос впервые. Но не для вязания, а для экспериментов с электростатикой. Если потереть спицу, то она приобретет электрический заряд. И имеющая противоположный заряд капля воды будет притягиваться к ней, летая кругами. Сила притяжения подчиняется закону обратных квадратов, и капля будет двигаться как маленький спутник (силы гравитации тоже подчиняются этому закону). За одним исключением – источник гравитации в природе можно представить материальной точкой (звезды, планеты и прочие тяжелые объекты имеют сферическую форму), а здесь силовое поле получилось цилиндрическим, и капля двигается не в плоскости орбиты, а в трехмерной области. Движение капли также можно сравнить с поведением заряженных частиц солнечного ветра, попадающих в магнитное поле Земли.

Вопрос: В конце видео д-р. Петтит размещает нейлоновую спицу около шприца, которым впрыскивает воду около тефлоновой спицы. Зачем Дону нейлоновая спица, и почему вторая спица должна быть тефлоновой?

[Ответ]Тефлон забирает электроны от тех материалов, которыми его натирают, приобретая отрицательный заряд.

Нейлон, наоборот, отдает электроны, когда его натирают, и приобретает положительный заряд. Капли воды, пролетая около нейлоновой спицы, приобретают от нее небольшой положительный заряд.

Разные заряды притягиваются, и капли воды начинают стремиться к отрицательно заряженной спице.

Об этом не говорится в видео, но чашку для питья в невесомости изобрел тот же самый Дон Петтит еще в 2008 году в своем предыдущем полете. Обычно космонавты и астронавты пьют из пластиковых пакетов с трубочками. В них можно разводить порошковые напитки, заваривать чай или кофе. Но если мы сделаем специальную чашку с углом с одной стороны, капиллярный эффект заставит жидкость подняться в этом месте. И из чашки можно будет потягивать жидкость. На видео космонавты и астронавты впервые чокаются в условиях невесомости. Конструкция Петтита довольно простая, потом разработали красивые фигурные чашки, но эффект они используют тот же самый. Этот же капиллярный эффект применяется в “серьезном” ракетостроении – подобные углы удерживают жидкое топливо около горловин баков, чтобы при запуске в двигатели не попал пузырь газа наддува. Уже потом, когда двигатель начнет набирать тягу, жидкое топливо окажется внизу под собственным весом.

Вопрос: Почему нельзя использовать обычную чашку в невесомости?

[Ответ]Из-за сил смачивания вода будет стремиться растечься по стенкам. А небольшое возмущение вроде отхлебывания может оторвать воду от поверхности. Если силы поверхностного натяжения не смогут удержать воду, она разлетится повсюду. В космической кружке жидкость остается у стенок, а капиллярные силы не позволяют воде отрываться от них, когда пьешь.

На Земле можно получить пленку воды только если серьезно уменьшить ее поверхностное натяжение. Этот эксперимент часто невольно ставят дети, играя с мыльными пузырями. Когда есть тяжесть, из дистиллированной воды пленку не получить, а вот в невесомости появляются удивительные эффекты – капли воды, выброшенные из шприца, могут войти в пленку, отразиться от нее или даже пролететь насквозь. А если мы возьмем паяльник и создадим градиент температуры, то в пленке возникнет эффект Марангони – перемещение вещества из-за разницы поверхностного натяжения. При этом можно получить движение в противоположном направлении. Если пленка воды выпуклая, то есть толще в центре, то конвекция будет в стороны, а если пленка вогнутая, то есть тоньше в центре, чем по краям, то конвекция будет направлена в центр.

Вопрос: Почему форма водяной пленки определяет направление эффекта Марангони?

[Ответ]Нагрев уменьшает поверхностное натяжение, и вода начинает удаляться от источника тепла. Но в каком направлении она пойдет? Вода нагревается быстрее там, где ее слой тоньше, поэтому она стремится уйти по более тонкому пути. В случае выпуклой пленки это края, в случае вогнутой – центр.

Продолжаем эксперименты с тонкими пленками. В них сравнительно слабы силы вязкости, поэтому, если закрутить такую пленку, предварительно подкрасив, то будет видно, что она способна вращаться минутами.

Капля красителя, попав на пленку, образует грибообразную фигуру, фактически, являющуюся продольным разрезом вихревого кольца. Такой же эффект можно получить, если подуть через трубочку на пленку.

Ну и, наконец, водяная пленка работает как линза – выпуклая будет собирающей (положительной), а вогнутая – рассеивающей (отрицательной). Плоская пленка не будет ни увеличивать, ни уменьшать изображение.

Вопрос: Как вязкость влияет на вихрь?

[Ответ]Чем больше вязкость, тем меньше вихрь, потому что, чем больше вязкость, тем больше притяжение молекул, поэтому, например, в меду вихри будут меньше, чем в воде.

Благодаря силам поверхностного натяжения в невесомости можно сделать пузырь из воздуха внутри пузыря из воды, а при определенной удаче на какое-то время – пузырь из воздуха внутри пузыря из воды, летающего внутри воздушного пузыря внутри водяного. И все это еще и вращается.

Вопрос: Почему, когда самый большой пузырь вращается, пузыри внутри него выравниваются по центру?

[Ответ]Без тяжести на пузыри может воздействовать только центробежная сила. Вода плотнее воздуха, поэтому она выбрасывается на периферию (но у воды сильнее связь между молекулами, поэтому она не рассыпается), а воздух собирается в центре, поскольку остальное пространство занято водой.

На станции есть камера, снимающая в ближнем инфракрасном диапазоне. Наличие аналогичной камеры, снимающей в видимом диапазоне, позволяет по очереди смотреть на одну и ту же местность в разных диапазонах.

ИК-диапазон делает очень заметным растительность, что позволяет не только снимать красивые фотографии, но и использовать полученные данные в науке и народном хозяйстве.

Вопрос: Почему растения в ИК-диапазоне красные, а города – серые?

[Ответ]Растения отражают инфракрасный свет. Фотографии делались на дневной стороне, поэтому растения отражают ИК, а бетонные города – поглощают. На ночной стороне будет наоборот, потому что города будут испускать накопленное тепло.

В этом видео Дон нашел старые колонки, капнул на них водой, стал подавать чистые тоны в районе 20-40 Герц и смотреть, что получилось. Получилось очень красиво, и на Земле гравитация не позволит такое увидеть.

Вопрос: Почему используются именно низкие частоты?

[Ответ]Мы думаем это происходит потому, что низкие частоты позволяют формироваться стоячим волнам. Стоячая волна образуется, когда две волны, движущиеся в противоположном направлении, пересекаются, создавая интерференцию, усиливающую и уменьшающую амплитуду. Вероятность этого больше на низких частотах.

Я в социальных сетях:

, , , Instagram, YouTube

Источник: https://lozga.livejournal.com/150423.html

Ссылка на основную публикацию