Пояс койпера – все о космосе

Земля и Вселенная. Часть 11. “Пограничная застава” на окраине Солнечной системы

    Сдвигал ли Нептун пояс Койпера?

2. Нептун не сдвигал пояс Койпера
   «Астрофизики из университета Виктории в Канаде продемонстрировали, что так называемый пояс Койпера – пояс небольших небесных тел на периферии Солнечной системы – вопреки современным представлениям ученых всегда находился в этом участке космического пространства и не был смещен сюда гравитацией Нептуна, сообщается в статье исследователей, принятой к печати в журнале «Astrophysical Journal Letters».
    Астрономы полагают, что наша Солнечная система выглядела совсем иначе, чем теперь, в первые миллионы лет своего существования. По мере ее эволюции орбиты планет претерпевали значительные изменения – Нептун сместился на периферию системы, тогда как Юпитер придвинулся немного ближе к Солнцу. Как менялись орбиты Сатурна и Урана, ученым понятно в меньшей степени, хотя большинство полагает, что эти планеты все-таки, подобно Нептуну, тоже увеличили радиусы своих орбит.
    При этом движение Нептуна должно было оказать влияние на местоположение пояса Койпера, находящегося в настоящее время за его орбитой относительно Солнца.
    Алекс Паркер (Alex Parker) и его научный руководитель Джон Кавелаарс (John Kavelaars) проводили моделирование движения объектов в этом поясе, многие (около трети) из которых достаточно крупны и имеют более  в поперечнике. Более всего ученых интересовали так называемые двойные системы – тела, одно из которых вращается вокруг другого по мере того, как оба совершают обороты вокруг Солнца.

    «Двойные системы очень полезны для астрономов, так как их орбиты очень сильно зависят от окружения. Мы можем их использовать для изучения как современного состояния межпланетного пространства, так и его состояния в далеком прошлом», – пояснил Паркер, слова которого приводит пресс-служба Американского астрономического общества.

    В своей модельной работе ученые показали, что двойные системы в поясе Койпера вращаются на очень широких орбитах с медленной скоростью, что было бы невозможно в том случае, если пояс был когда-либо в прошлом смещен на свою нынешнюю позицию в результате движения планеты Нептун.
    «Объекты в поясе Койпера не находились бы сейчас на своих орбитах, если бы когда-либо в прошлом испытывали на себе воздействие Нептуна», – сказал Паркер. Интерес астрономов к поясу Койпера вызван тем, что образующие его тела представляют собой осколки материи, сформировавшей в прошлом все планеты солнечной системы.“Понимание структуры и истории пояса Койпера поможет нам понять и процессы формирования планет не только в нашей системе, но и в других планетных системах, обнаруживаемых в настоящее время”, – подытожил Паркер». (Москва – РИА «Новости». 06 окт 2010, 14:50).  http://www.rian.ru/science/20101006/282796695.html

3.

 Образование двойных объектов в поясе Койпера в результате обмена (Kuiper-belt Binary Formation through Exchange Reactions)
    «Пояс Койпера и основной Пояс астероидов образовались из одного и того же протопланетного облака, но последние наблюдения транснептуновых объектов (TNO) [указали на следующие] различия:
    1. Доля двойных в поясе Койпера на порядок выше.
    2. Отношение масс большинства двойных объектов пояса Койпера близко к 1.
    3. Орбиты двойных объектов в поясе Койпера более широкие и более вытянутые». http://www.astronet.ru/db/msg/1177733/ss.html

    Дефицит «малой фракции» объектов пояса Койпера 

    «Интенсивные исследования и целенаправленный мониторинг пояса Койпера поставили ученых перед очередной загадкой…

    К настоящему времени обнаружено свыше тысячи так называемых «объектов пояса Койпера» — небесных тел относительно небольшой (по сравнению с «нормальными» планетами) массы, обращающихся за пределами орбиты Нептуна.

    Однако среди них чрезвычайно мало относительно небольших – менее  в поперечнике – малых тел. Их доля, по некоторым ранее сделанным оценкам, примерно в 25 раз меньше теоретически предсказываемой. Объяснить это несовершенством инструментов трудно – современные телескопы позволяют увидеть такие тела. Так, на телескопе Хаббла было проведено исследование объектов вплоть до 28,5 звездной величины.
    Дефицит малых тел в поясе Койпера остается.
    Совместная американо-тайваньская группа два года назад начала программу целенаправленного поиска малых объектов в поясе Койпера «напросвет». Теперь ученые представили первые результаты.    Группа под руководством Чарльза Алкока (Charles Alcock) разработала для поиска сверхмалых объектов пояса Койпера методику, позволяющую обнаруживать объекты пояса Койпера по однократному затемнению ими звезд.
    В рамках проекта «Taiwanese American Occultation Survey» (TAOS) проводились фотометрические исследования вариаций света удаленных звезд, расположенных вблизи эклиптики (широта +/- 10 градусов) с помощью трех наземных телескопов апертурой  каждый, удаленных друг от друга на 6 – . Наблюдения начались в 2005 году.
    Была разработана методика статистического анализа данных, собираемых несколькими телескопами. Ни одного статистически значимого события, которое можно было бы трактовать как следствие затмения объектом пояса Койпера света звезды в момент ее наблюдения, обнаружить не удалось. Тем самым удалось наложить верхний предел на распределение объектов пояса Койпера по массам. Малых объектов аномально мало – по крайней мере в десятки раз меньше, чем следовало бы ожидать. Загадка дефицита «малой фракции» объектов пояса Койпера остается.  Наблюдения продолжаются…» (12 октября 2008, 19:20). 
    1. «12 января 2006 года Атоку Накамура, астроном-любитель из Аляски, фотографируя звездное небо, зафиксировал вспышку неизвестного происхождения. Дальнейшие наблюдения совместно с астрономами других стран позволили запечатлеть еще три схожие вспышки. Компьютерная обработка данных показала, что источник излучения находился на расстоянии восьми миллиардов километров от Земли, в так называемом поясе Койпера – месте, где располагаются многочисленные планетоиды, то есть небольшие планеты, по размерам уступающие Марсу, но зачастую превосходящие Пуну.   Спектрографический анализ обнаружил поразительное сходство параметров вспышек с ядерным взрывом мощностью от шестидесяти до трехсот килотонн. Участники наблюдений сформировали инициативную группу астрономов-любителей и оповестили о своей находке научное сообщество, в том числе руководство крупнейших обсерваторий Земли. Однако отклики были вялыми: ученые-профессионалы сочли, что имеет место ошибка наблюдений, либо их просто мистифицируют.
    Инициативная «Группа 2006», в которую вошли астрономы многих стран, решила продолжать наблюдение своими силами, чтобы предъявить новые доказательства. В 2007 году была зафиксирована новая вспышка, в 2008 – еще одна, и, наконец. 9 декабря 2009 года – последняя на текущий момент. Атоку Накамура, главный координатор «Группы 2006», 21 декабря 2009 года выпустил меморандум, в котором отразил все факты, имеющиеся в его распоряжении. По-прежнему источники вспышек располагаются в поясе Койпера, характер вспышек сходен с таковым при ядерном взрыве мощностью от ста килотонн и выше. Учитывая колоссальные размеры пояса Койпера и ограниченные возможности любителей можно предположить, что на самом деле вспышек могло быть гораздо больше.
    Но главным в меморандуме было другое. Накамура заявил, что располагает сведениями, будто правительственные обсерватории отнюдь не игнорировали первое заявление инициативной группы от 2006 года, напротив, сейчас развернуты широкомасштабные проекты по изучению аномальных вспышек. Проекты эти по масштабам неизмеримо крупнее, чем проводимые «группой 2006», в них задействованы, помимо земных обсерваторий также и космические аппараты, в частности рентгеновский телескоп Astro-E2, гамма-телескоп GLAST, оптический телескоп Hubble, инфракрасный телескоп WISE. Однако никаких сведений о результатах, хотя бы промежуточных, в научном сообществе не публиковалось… Никаких достоверных сведений нет…
    Существует вероятность, что феномены, наблюдаемые в поясе Койпера, имеют естественный характер, пока не понятный науке… В любом случае «группа 2006» продолжит самостоятельные наблюдения за событиями в поясе Койпера». (25.07.2010, 14:44). http://www.uznaj.com/index.php?option=com_content&view=article&id=80:neizvestnaja-woina&catid=39:kosmos&Itemid=62

    2. Сообщение «iinii» 07 марта 2010, 22:56:26 в форуме http://www.sciteclibrary.ru/cgi-bin/yabb2/YaBB.

pl?num=1267991767/1: «На днях прочитал в солидном журнале статью о том, что на расстоянии 8 миллиардов км от Земли в поясе Койпера астрономами разных стран на протяжении последних пяти лет наблюдаются вспышки, по своим характеристикам соответствующие тем, что бывают у термоядерных взрывов. Информация об этом утаивается ведущими державами». http://artefact-2007.livejournal.com/27256.html

Схема «Пояс Койпера и облако Оорта» 

  [Безусловно, сообщения о вспышках в поясе Койпера должны быть подвергнуты проверке. Но отсутствие информации в СМИ может означать и другое – сокрытие данных обсерваториями и космическими агентствами.

    Хотя вероятность официального подтверждения сообщения о вспышках невелика, хочу проанализировать ситуацию в свете возможности сохранения в Солнечной системе действующих уже миллиарды лет артефактов, в том числе имеющих функцию защиты области внутренних планет (в первую очередь – Земли).

В случае угрозы извне в поясе Койпера защитные «редуты» не должны ограничиваться гравитационными «ловушками» в виде крупных планетоидов.
    Кроме них, в поясе должны существовать также древние  энергетические установки, способные генерировать мощнейшие разряды, разрушающие объекты, представляющие опасность для внутренних планет.

Уничтожение опасных объектов исполинскими разрядами вполне может вызывать вспышки, различимые с Земли.
    Важно проанализировать, в каких известных астрономам телах пояса Койпера находятся гипотетические энергетические установки Предтеч. Это большая работа, требующая  усилий профессионалов.

Более того – я выдвигаю предложение о создании Исследовательского центра по изучению артефактов Солнечной системы…
    Из аномалий пояса Койпера мое внимание привлекают двойные объекты, отношение масс которых близко к единице.

Также наводят на размышление дефицит «малой фракции» объектов и  факт резкого «обрыва» пояса Койпера на расстоянии 47-50 астрономических единиц от Солнца…
    Теперь – размышления более общего плана.    Более или менее плавное течение событий новейшей истории человечества было прервано в 2003 году – см.

 «Вывод о получении мировой элитой принципиально новой информации о космосе»
    Тогда «лунный запрет» 1972 – 1994 годов и «марсианское проклятие» 1976 – 1996 сменилось чрезвычайной активностью в дальнем и среднем космосе. Сейчас я меняю свою оценку этого факта, подробно проанализированного в вышеуказанной статье.

Начинаю думать, что в 1999 – 2002 годах «новая информация о космосе» действительно была получена, но не мировой элитой, а искусственным разумом, управляющим артефактами, оставленными Предтечами (их совокупность я называю «Механизмом Артефакта»).

 Интуиция подсказывает, что, возможно, указанная информация была связана с опасными галактическими воздействиями, приблизившимися к Поясу Койпера извне. Описанные здесь вспышки 2006-2009 годов, возможно, явились результатом ответного энергетического удара «Механизма Артефакта».

    Это привело не только к изменению методов, но и форсированию достижения долгосрочных целей, поставленных перед человечеством. Действительно, при всей емкости энергетических установок (называю их «Звездными вратами»), запасы энергии в них все же не беспредельны. Стало необходимым участие человечества для креативного отпора новой опасности см. «Пути титанов. Звездное будущее человечества» .А между делом «Механизм Артефакта» производит энергетическую перестройку в Солнечной системе – мы наблюдаем это по процессам на Солнце, Юпитере, в системе Сатурна…](«Пограничная застава на окраине Солнечной системы». Комментарий Ф.Д.)

Считается, что Феба в древности была объектом пояса Койпера, но затем стала спутником Сатурна.Фото «Кассини» (НАСА).

«Trans Neptunian Objects». «Trans Neptunian Objects or Kuiper Belt object as it called 

Источник: http://artefact-2007.blogspot.com/2012/04/11.html

Где находится и из чего состоит Пояс Койпера? | Живой космос

Под малыми телами (планетами) Солнечной системы обычно подразумевают хорошо всем известные астероиды и кометы. В течение длительного времени считалось, что в Солнечной системе существуют два главных резервуара этих малых тел.

Читайте также:  Диаграмма герцшпрунга-рассела - все о космосе

Один из них – это Главный астероидный пояс, который располагается между Марсом и Юпитером, а другой – это Облако Оорта, находящееся далеко на краю Солнечной системы. Если Главный астероидный пояс в соответствии с его названием содержит только астероиды, то Облако Оорта является главным резервуаром для комет.

Кстати, само это облако носит имя знаменитого голландского астронома, предсказавшего его существование.

Традиционный интерес к исследованиям комет и астероидов состоит в том, что обычно считается, что эти малые тела состоят из вещества, оставшегося еще со стадии протопланетного диска вокруг Солнца. Это значит, что излучение их дает информацию о процессах, происходивших в Солнечной системе еще до образования планет.

​Астероиды – это малые планеты, имеющие диаметры в интервале от 1 до 1000 км. Их орбиты расположены примерно между орбитами Марса и Юпитера.

История открытия этого Главного астероидного пояса началась с предсказания в 1596 году великого астронома Иоганна Кеплера, который считал, что между орбитами Марса и Юпитера должна существовать отдельная планета. В 1772 году немецкий ученый И.

Тициус предложил эмпирическую формулу, согласно которой неизвестная планета должна находится на расстоянии 2,8 а.е. от Солнца (1 а.е. – это одна астрономическая единица, равная расстоянию от Земли до Солнца в ~150 млн км). Закон, который описывается этой формулой, получил название закона Тициуса-Боде.

В 1796 году на специальном конгрессе ученых-астрономов был принят проект поиска этой неизвестной планеты, и спустя четыре года итальянский астроном Дж. Пиацци открыл первый астероид – Церера. Затем знаменитый немецкий астроном Г. Ольберс (вспомним парадокс Ольберса) открыл второй астероид, получивший название Паллады.

Так состоялось открытие Главного астероидного пояса Солнечной системы. К началу 1984 года число астероидов этого пояса с надежно установленными параметрами орбит достигло 3000. Научная работа по открытию новых астероидов и уточнению их орбит продолжается и по сей день.

​Другой вид малых тел – кометы также принадлежит Солнечной системе. Кометы, как правило, движутся вокруг Солнца по вытянутым эллиптическим орбитам различных размеров, произвольно ориентированным в пространстве. Размеры орбит большинства комет в тысячи раз больше поперечника планетной системы.

Большую часть своего времени кометы находятся в самых удаленных точках своих орбит (афелиях), образуя, таким образом, кометное облако на далеких окраинах Солнечной системы. Это облако и получило название Облака Оорта. Это облако простирается далеко от Солнца, достигая расстояний в 105 а.е.

Считается, что Облако Оорта содержит до 1011 кометных ядер. Периоды обращения наиболее удаленных комет вокруг Солнца могут достигать значений 106-107 лет.

Напомним, что знаменитая комета наших дней – комета Хейла-Боппа прибыла к нам из ближайших окрестностей Облака Оорта, так как ее орбитальный период составляет всего (!) около трех тысяч лет.

Проблема происхождения малых тел Солнечной системы тесно связана с проблемой происхождения самих планет. В 1796 году французский ученый П. Лаплас выдвинул гипотезу об образовании Солнца и всей Солнечной системы из сжимающейся газовой туманности.

Согласно Лапласу, часть газового вещества отделилась от ядра туманности под действием возросшей при сжатии центробежной силы, что прямо следует из закона сохранения момента количества движения. Это вещество и послужило материалом для образования планет. Эта гипотеза встретилась с трудностями, которые были преодолены в работах американских ученых Ф. Мультона и Т. Чемберлена.

Они показали, что более вероятным является образование планет не прямо из газа, а скорее из малых твердых частиц, названных ими планетозималями. Поэтому в настоящее время считается, что процесс образования планет Солнечной системы проходил в два этапа.

На первом этапе из пылевого компонента первичного облака околосолнечного вещества образовалось множество промежуточных тел размером в сотни километров (планетозималей). И лишь затем на втором этапе из роя промежуточных тел и их обломков аккумулировались планеты.

​В Солнечной системе может существовать несколько резервуаров таких промежуточных тел, или планетозималей. В 1949 году астроном К.Е. Эджворт (K.E. Edgeworth), а затем в 1951 году астроном Дж.П. Койпер (G.P.

Kuiper) предсказали существование другого резервуара – семейства транснептуновых объектов, возникших на ранней стадии образования Солнечной системы.

Являясь остатками протопланетного диска, эти предсказанные объекты должны были концентрироваться на орбитах с малыми эксцентриситетами и углами наклона непосредственно вокруг Нептуна. Гипотетический резервуар таких объектов и получил название пояса Койпера (КП, Kuiper Belt).

ОТКРЫТИЕ ПОЯСА КОЙПЕРА:

ОСНОВНЫЕ СВОЙСТВА

СОСТАВЛЯЮЩИХ ЕГО ОБЪЕКТОВ

​Начнем с того факта, что исследование орбиты знаменитой кометы Галлея позволило дать грубую оценку массы пояса Койпера в пределах до 50 а.е. от Солнца. Она должна составлять довольно малую часть массы Земли.

​Многочисленные фотографические поиски медленно движущихся объектов пояса Койпера (ОК) долго не приводили к успеху. Наконец, в 1930 году астроном Томба открыл первый новый объект за пределами орбиты Нептуна. Это была планета Плутон.

Следует сразу заметить, что масса Плутона необычайно мала и составляет всего 0,0017 МЗемли , в то время как масса Нептуна равняется 17,2 МЗемли . В 1979 году был открыт второй объект 2060 Хирон, который относится к группе объектов, получивших название Кентавров.

Кентавр – это объект, орбита которого лежит в области между Юпитером и Нептуном. Неудача в поиске ОК была связана с недостаточной эффективностью фотографического метода наблюдений.

После появления полупроводниковых твердотельных приемников излучения (так называемых ПЗС-приборов с зарядовой связью) стало возможным проведение более глубоких обзоров неба. Появилась возможность регистрации света, отраженного от естественных космических малых тел с размером порядка 100 км и меньше в районе орбиты Нептуна и далее.

​Астрономы создали специальную программу поиска таких тел – Программу наблюдения космического пространства (Spacewatch program). И в результате работы этой программы были открыты еще два объекта, принадлежащие к группе Кентавров – это 5145 Фолус и 1993НА2 .

Источник: https://alivespace.ru/poyas-koypera/

Пояс Койпера

Пояс Койпера — это регион в Солнечной системе, который начинается за Нептуном. Но ученые на данный момент не знают, где он заканчивается. Мы не знаем, что происходит на наружном крае пояса Койпера и где он находится, но мы знаем, что он очень далеко: некоторые открытые объекты пояса Койпера имеют необычные орбиты, которые в 2000 раз больше, чем расстояние между Землей и Солнцем.

Никто не предсказывал обнаружение пояса Койпера. Никто не писал работу, в которой бы говорилось: «Ищите здесь объекты такой-то яркости, такого-то размера и в таком-то количестве». Но были предположения. Самое известное из них — это предположение Джерарда Койпера, американского астронома голландского происхождения.

В 1951 году он написал работу, в которой говорил, что это странно, что Солнечная система заканчивается на Плутоне, и, возможно, она продолжается и после него. Это звучит нормально для современных читателей.

Но, кроме того, Койпер сказал: «Если бы на границе Солнечной системы были маленькие объекты, гравитация Плутона (которого мы считаем таким же массивным небесным телом, как Земля, или больше) давным-давно дестабилизировала бы орбиты этих объектов, а этот регион был бы пуст».

Койпер был неправ насчет Плутона: он не так массивен, содержит только 0,2% массы Земли и не оказывает такого эффекта на окружающие небесные тела. Ирония состоит в том, что Койпер не предположил существования того, что впоследствии стало называться поясом Койпера. Он предположил, что его там нет.

Это пример закона Стиглера: «Никакое научное открытие не было названо в честь первооткрывателя». Закон Стиглера был открыт Робертом Мертоном, что доказывает это утверждение.

Джерард Койпер (1905–1973) 

До Койпера ученые также выдвигали разные предположения. Одно из них было сделано в 1943 году во время Второй мировой войны ирландцем по имени Кеннет Эджворт.

Он написал одно или два предложения в своей статье и сказал: «Возможно, есть какие-то небесные тела на крае Солнечной системы, которые слишком тусклые, чтобы мы их увидели (он назвал их кластерами), и, возможно, они относятся к кометам».

Но это не научное предположение, оно ни на чем не основано, и с ним ничего нельзя сделать. Это напоминает записи Нострадамуса, который в XVI веке случайно предсказал Вторую мировую войну и убийство президента Кеннеди.

Если вы пишете что-то расплывчатое, вы оставляете для будущих поколений простор для раздумий. Кто-то может решить, что вы знали, о чем говорили, хотя на самом деле это было не так.

Когда мы начали искать пояс Койпера в 1986 году, компьютеры были такими слабыми, что никто не мог вычислить динамику Солнечной системы. Нужно было работать с приблизительными цифрами, которые складывались аналитически, а это очень сложно.

В то время был большой интерес к тому, откуда приходят короткопериодические кометы, потому что их предполагаемый источник — облако Оорта — еще не был найден.

Уругвайский астроном Хулио Фернандез написал статью в 1980 году, предположив, что за Нептуном может существовать область, откуда приходят короткопериодические кометы. Эта статья уже была похожа на научное предположение.

В отличие от работ Койпера и Эджворта, она кажется убедительной в ретроспективе. Но она не мотивировала ученых на поиски, включая нас. Звучит плохо, но это была просто еще одна статья.

Научный метод часто описывается как предположения, которые доказаны наблюдениями. Но наука часто работает не так. В астрономии почти ничего не открывается с помощью предположений и почти все важное открывается случайно. Теории часто создаются, чтобы описать новые вещи, которые поддаются наблюдениям.

Редко бывает так, что выдвинутое предположение подтверждается наблюдениями. Мы просто недостаточно хороши для этого. Тем не менее без подходящей модели в 1985 году мы бы не знали, что тот факт, что на границах Солнечной системы пусто, кажется странным. За Сатурном были Уран, Нептун и Плутон — три объекта.

При этом внутренняя часть Солнечной системы полна разных объектов: астероидов, комет, других планет. И это было очень странно: почему Солнечная система должна быть пустой с краю и полной объектов внутри? Вот почему мы решили провести исследование.

Она пустая, потому что все объекты отдалены, либо она пустая, потому что далекие объекты слишком тусклые, чтобы мы их заметили. Мы не думали о поясе Койпера, не думали о том, что находится за Нептуном, мы были счастливы, что знаем хотя бы, что находится за Сатурном, и больше не о чем было говорить.

В итоге мы начали исследование, которое назвали «исследование медленных объектов». Оно было нацелено на то, чтобы найти что-то за Сатурном.

Оказалось, что очень сложно посчитать расстояние до объекта, если вы не используете особую геометрию, чтобы направить телескоп прямо по направлению к Солнцу. Когда вы делаете это, скорость движения объекта по небу обратно пропорциональная расстоянию из-за параллакса.

Это как два самолета: тот, что летит выше на скорости 50 миль/час, дольше пересекает небо, а тот, что летит низко на той же скорости, пересекает небо очень быстро. Мы можем измерить расстояние исходя из скорости. Мы использовали эту простую тактику наблюдения противоположно Солнцу, а затем использовали параллакс, чтобы измерить расстояние.

Вот почему мы назвали это «исследованием медленных объектов». Мы искали медленно движущиеся объекты, потому что, скорее всего, эти объекты расположены очень далеко.

Читайте также:  Межзвездный газ - все о космосе

Мы годами не могли найти ничего интересного. Мы нашли много объектов вроде астероидов внутри Солнечной системы, но не нашли ничего за Сатурном, а искали именно это.

Мы потратили около 5 лет на это исследование и не находили ничего ценного вплоть до 1992 года. А потом нашли объект. Он был не просто за орбитой Сатурна — он был далеко за пределами известного региона Солнечной системы. Мы назвали этот объект 1992 QB1.

Это был самый далекий объект, который когда-либо наблюдался в Солнечной системе.

Это было захватывающе. Дело в том, что, пока ты не найдешь первый объект, ты не знаешь, бесполезно ли то, что ты делаешь, не знаешь, в правильном ли направлении ты ищешь. Ты даже не знаешь, есть ли там что искать. Но как только ты находишь один объект, все сомнения исчезают. Это так влияет на всю работу, на образ мыслей, что ты переходишь за все психологические барьеры.

То, что казалось невозможным, становится обычным делом, когда это уже сделано. Я работал вместе с Джейн Лу, которая была постдоком в то время. После того как мы нашли 1992 QB1, мы начали находить и другие объекты. Мы нашли около 40 или 50 объектов в течение следующих нескольких лет.

Другие ученые присоединились к этой игре, и к середине 2016 года общее число известных объектов составляло почти 2 000. Это очень много.

Вскоре мы сделали много удивительных открытий, касающихся пояса Койпера. Например, мы обнаружили, что есть разные виды объектов пояса Койпера. Мы дали им разные названия: классические, резонансные, рассеянные и обособленные.

Они динамически отличаются друг от друга — в основном по причинам, связанным с гравитационным контролем Нептуна, который является довольно массивной планетой (в 16 раз массивнее Земли) и находится не так далеко от некоторых объектов пояса Койпера.

Нептун накладывает динамическую структуру на пояс Койпера из-за своего гравитационного влияния.

Мы доказали, что Плутон — это просто один из больших объектов пояса Койпера, определили распределение размеров и масс в поясе Койпера и поняли, что это только верхушка айсберга: из объектов, которые мы видели, мы извлекли 100 000 объектов пояса Койпера больше сотни километров и миллиард объектов больше одного километра. Поразительно, что раньше они были полностью неизвестными.

Несмотря на то что объектов пояса Койпера очень много, мы обнаружили, что их масса довольно мала и равна только 10% от массы Земли.

Это было загадкой: как формируются эти тела, если у них такая маленькая масса? Очень мало материала распространено по большому объему пояса Койпера. Эти тела растут очень медленно. Модели малой массы пояса Койпера стали горячей темой.

Они были основаны на идее, что пояс Койпера был гораздо более массивным, когда начал формироваться, — в 20 или 40 раз массивнее Земли. Но большая часть массы была потеряна.

Орбитальный резонанс

Ключ к пониманию потери массы заключается в другом сделанном нами наблюдении. Оно состоит в том, что объекты пояса Койпера «привязаны» орбитальным резонансом Нептуна. Это значит, что их сидерический период обращения, деленный на сидерический период Нептуна, — это отношение малых целых чисел.

Например, в резонансе от 3 до 2 Нептун трижды обходит Солнце за то же время, за которое объекты пояса Койпера успевают обогнуть Солнце только два раза.

Это значит, что сила притяжения Нептуна действует на тела в той орбите, поэтому сила растет, как когда мы качаем качели и сила приумножается со временем.

Это открытие сделала Рену Малхотра из Аризоны в 1990-х годах вскоре после открытия пояса Койпера. Наблюдение за первыми резонансными объектами привело к появлению этой прекрасной модели. Но вопрос в том, как затянуть эти объекты в резонанс.

Если просто разбросать объекты пояса Койпера, немногие из них войдут в такой резонанс, какой мы наблюдаем. Рену объяснила и это. Она отталкивалась от работ Фернандеза и Уинга Ипа, в которых говорилось, что планеты мигрируют.

Радиусы орбит планет не всегда были такими, как сейчас: Нептун, к примеру, сначала был ближе к Солнцу, а затем двигался по направлению от него.

https://www.youtube.com/watch?v=RLHuk3JJH_A

И пока он отходил дальше, его резонансы выталкивались и собирали объекты пояса Койпера. Это похоже на то, как снег собирается в лопате, когда мы ее в него заталкиваем. По мере того как резонанс пересекал пояс Койпера, объекты к нему «прилипали».

Это объясняет, почему в орбитальном резонансе так много объектов. Это единственное объяснение тому, почему в резонансе с Нептуном находится так много тел. Пояс Койпера показывает, что планеты сформировались не на тех орбитах, на которых они находятся сейчас.

Они мигрируют.

Влияние на Солнечную систему

Пояс Койпера сильно повлиял на понимание происхождения и динамики Солнечной системы. До этого Солнечная система была похожа на часы: набор планет, вращающихся вокруг Солнца непринужденно, стабильно, предсказуемо и даже скучно.

После обнаружения пояса Койпера, а особенно резонансных объектов, из-за которых мигрируют планеты, появились необыкновенные возможности. Если планеты уносились туда, где они находятся сейчас, они, возможно, прошли через резонансы друг друга.

Если это так, то они сотрясли Солнечную систему, и произошли разные хаотичные процессы.

В некоторых моделях потеря 99,9% объектов пояса Койпера могла произойти в результате сильного сотрясения Солнечной системы, которое случилось в результате взаимодействий между Юпитером и Сатурном, которое произошло в результате миграции планет.

Понимание того, что структура пояса Койпера зависит от миграции планет, изменило направление исследований Солнечной системы. Особенности, которые не были ожидаемы и которые никто не предсказывал, оказались удивительно важными для понимания нашего места в этой системе.

Влияние пояса Койпера на изучение Солнечной системы и эволюции ее формирования было огромным. Наше понимание происхождения архитектуры Солнечной системы сильно отличается от того, что мы думали раньше. И теперь мы понимаем, что Солнечная система работает далеко не как часы.

Пояс Койпера и облако Оорта

Кометы обычно не очень большие (около километра в диаметре), и они теряют массу (она уходит в хвост). Мы можем посчитать, как долго комета может терять массу по нашим меркам. И это происходит не очень долго — около 10 000 лет.

Ядро кометы не может быть того же возраста, что и Солнечная система, которой уже 4,5 миллиардов лет. Скорее всего, они недавно появились в Солнечной системе.

Другими словами, они только появляются в Солнечной системе где-то недалеко от Земли и, как только они появляются, начинают испаряться. Вопрос в том, откуда они берутся.

Есть два ответа на этот вопрос. Первый был сформулирован в 1950-х годах голландским астрономом Яном Оортом. Он выяснил, что долгопериодические кометы (те, чьи орбиты старше 200 лет) имеют эллиптическую орбиту очень большого размера, которая распространяется рандомно.

Примерно равное количество приходит из разных сторон: из северного полушария, из южного, из сферического и изотропного источника. Сферический источник называют облаком Оорта. Оно выглядит как большой пчелиный рой, окружающий Солнечную систему.

Он огромный, в 50 000 или 70 000 раз больше расстояния между Солнцем и Землей. Это источник долгопериодических комет. Мы не наблюдаем за объектами в облаке Оорта, потому что они слишком тусклые для наших телескопов.

Все, что мы знаем об облаке Оорта, включая сведения о его существовании, было получено из комет, которые выбились из облака Оорта гравитацией пролетающих мимо звезд.

Комета ISON проходит мимо Венеры. Комета прилетела из облака Оорта 

С другой стороны, короткопериодические кометы (с периодом меньше 200 лет) имеют относительно малую и круглую орбиту. Они распределены не рандомно, а, напротив, совмещены с плоскостью орбит Солнечной системы.

Вопрос тот же: откуда они берутся? Оорт говорил, что они приходят из облака Оорта, но Юпитер смог поймать их и переломить их орбиты так, чтобы они сформировали диск. Эта идея принималась с 1950-х до 1980-х годов.

Но оказалось, что Юпитеру сложно схватывать достаточно долгопериодических комет из облака Оорта и делать их короткопериодическими.

Пояс Койпера, который мы знаем, поставляет Солнечной системе короткопериодические системы. И так как пояс гораздо ближе (50 астрономических единиц вместо 50 000 астрономических единиц облака Оорта), мы можем наблюдать за ним, а не просто за предметами, которые залетели в околоземное пространство. Это еще одна причина, по которой пояс Койпера так нашумел среди астрономов.

Пояс Койпера и другие звездные системы

Остаточные диски — это аналоги пояса Койпера, которые находятся вокруг других звезд. Многие звезды того же типа, что и Солнце, имеют диски из пыли, в которых частички пыли в диске не могут жить долго. Мы можем посчитать, как долго существует пыль, и этот срок невелик.

Тот факт, что звезда все еще имеет пылевой (или остаточный пылевой) диск, означает, что пыль появляется из какого-то источника. Модель пояса Койпера — это лучший известный нам источник пыли. Одно отличие состоит в том, что большинство остаточных дисков более массивны, чем пояс Койпера. Это сходится с той мыслью, что пояс Койпера был гораздо более массивен, чем он есть сейчас.

Если посмотреть на массивные остаточные кольца, можно понять, как выглядела молодая Солнечная система.

Будущие направления исследований

Обнаружение пояса Койпера дало нам лучшее понимание того, как устроена Солнечная система, но мы все еще не можем видеть далекие ее части. Мы не можем наблюдать за облаком Оорта, потому что оно слишком далеко и объекты недостаточно яркие. Даже внешние части пояса Койпера не так просто найти.

Мы предполагаем, что пояс Койпера смешивается с облаком Оорта, и хотели бы знать, где и как это происходит. Мы бы хотели измерить орбитальную структуру пояса более детально. Тогда у нас были бы более сильные догадки о происхождении и эволюции Солнечной системы.

Например, резонансный захват работает по-разному, если планеты мигрируют медленно и плавно и если они мигрируют быстро и в прыгающем режиме. Измерения орбит объектов пояса Койпера потенциально могут рассказать нам, как мигрировал Нептун, и, возможно, даже как и как долго он это делал.

Мы построили модели, которые адаптируются к новым наблюдениям Солнечной системы, но некоторые особенности остаются непонятными. Внешний край классического пояса Койпера — это не природная последовательность предложенных моделей.

Будущие наблюдения могут помочь решить эту проблему, но важнее построить новые модели, чтобы улучшить общее понимание устройства Солнечной системы. В конце концов мы бы хотели исследовать пояс Койпера с помощью космического судна. К сожалению, существующие ракетные технологии не готовы к этой задаче. В ближайшие десятилетия прогресс придет из наблюдений с помощью наземных и космических телескопов.

Читайте также:  Звезда ван маанена - все о космосе

Источник: http://earth-chronicles.ru/index/86-98654-5-2

Пояс Койпера. Разное от Космос

Пояс Ко́йпера (иногда также называемый пояс Э́джворта — Койпера) — область Солнечной системы от орбиты Нептуна (30 а. е. от Солнца) до расстояния около 55 а. е от Солнца1. Хотя пояс Койпера похож на пояс астероидов, он примерно в 20 раз шире и в 20-200 раз массивнее последнего23.

Как и пояс астероидов, он состоит в основном из малых тел, то есть материала, оставшегося после формирования Солнечной системы.

В отличие от обьектов пояса астероидов, которые в основном состоят из горных пород и металлов, обьекты пояса Койпера состоят главным образом из летучих веществ (называемых льдами), таких как метан, аммиак и вода.

В этой области ближнего космоса находятся по крайней мере три карликовые планеты: Плутон, Хаумеа и Макемаке. Кроме того, считается, что некоторые спутники планет Солнечной системы, такие как спутник Нептуна — Тритон и спутник Сатурна — Феба, также возникли в этой области.45

С тех пор, как в 1992 году пояс был открыт,6 число известных обьектов пояса Койпера (оПК) превысило тысячу, и предполагается, что ещё более 70,000 оПК с диаметром более 100 км пока не обнаружены.7 Ранее считалось, что пояс Койпера — главный источник короткопериодических комет с орбитальными периодами менее 200 лет.

Однако наблюдения, проводимые с середины 1990-х годов, показали, что пояс Койпера динамически стабилен, и что настоящий источник этих комет — рассеянный диск, динамически активная область, созданная направленным вовне движением Нептуна 4,5 миллиарда лет назад;8 обьекты рассеянного диска, такие как Эрида, похожи на оПК, но уходят по своим орбитам очень далеко от Солнца (до 100 а.е).

Плутон — крупнейший известный объект пояса Койпера. Первоначально он считался планетой, но, так как он принадлежит поясу Койпера, то был повторно классифицирован как «карликовая планета».

По составу Плутон напоминает прочие объекты пояса Койпера, а его период обращения позволяет отнести его к подгруппе оПК под названием «плутино».

В честь Плутона подгруппу из четырёх известных на данный момент карликовых планет, обращающихся за орбитой Нептуна, называют «плутоидами».

Пояс Койпера не следует смешивать с гипотетическим облаком Оорта, которое расположено в тысячи раз дальше. Обьекты пояса Койпера, как и обьекты рассеянного диска, облака Хиллса и облака Оорта, относят к транснептуновым обьектам (ТНО).

После открытия Плутона многие учёные полагали, что он не единственный в своём роде объект. Различные предположения по поводу области космоса, ныне известной как пояс Койпера, выдвигались в течение нескольких десятков лет, однако первое прямое доказательство его существования было получено только в 1992 году.

Так как гипотезы о природе Пояса Койпера, предшествовавшие его открытию, были весьма многочисленны и разнообразны, то сложно сказать, кто именно первым выдвинул подобную гипотезу.Первым астрономом, выдвинувшим предположение о существовании транснептуновой популяции, был Фредерик Леонард.

В 1930 году, вскоре после открытия Плутона, он писал: «Нельзя ли предположить, что Плутон — лишь первый из серии тел за орбитой Нептуна, которые ещё ожидают своего открытия, и в конечном счёте будут обнаружены?».

В 1943 году, в статье Журнала Британской астрономической ассоциации, Кеннет Эджворт предположил, что в области космоса за орбитой Нептуна первичные элементы туманности, из которой сформировалась Солнечная система, был слишком рассеяны для того, чтобы уплотнится в планеты.

Исходя из этого, он пришёл к выводу что «внешняя область Солнечной системы за орбитами планет занята огромным количеством сравнительно небольших тел»11, и что время от времени одно из этих тел «покидает своё окружение и появляется как случайный гость внутренних областей Солнечной системы»12, становясь кометой.

В 1951 году, в статье для журнала Астрофизика, Джерард Койпер предположил, что подобный диск сформировался на ранних этапах формирования Солнечной системы; однако он не считал, что такой пояс сохранился и до наших дней.

Койпер исходил из распространённого для того времени предположения о том, что размеры Плутона близки к размерам Землю, и потому Плутон рассеял эти тела к облаку Оорта или вообще из Солнечной системы.

Если бы гипотеза Койпера оказалась верной, то пояс Койпера не находился бы там, где мы его сейчас наблюдаем.13

В последующие десятилетия гипотеза принимала много различных форм: например, в 1962 году физик Алистер Кемерон выдвинул гипотезу о существовании «огромной массы мелкого материала на окраине Солнечной системы»,14 а позднее, в 1964 году, Фред Уиппл (популяризатор известной теории «грязного снежка», объясняющей строение кометы) предположил, что «кометный пояс» может быть достаточно массивным, чтобы вызвать заметные возмущения в орбитальном движении Урана, которые инициировали поиски пресловутой планеты за орбитой Нептуна, или, по крайней мере, чтобы затронуть орбиты известных комет.15 Наблюдения, однако, исключили эту гипотезу.14

В 1977 году Чарльз Коваль открыл ледяной планетоид Хирон, орбита которого расположена между Сатурном и Ураном. Он использовал блинк-компаратор — то же самое устройство, которое пятидесятью годами ранее помогло Клайду Томбо открыть Плутон.16 В 1992 году был обнаружен другой объект с похожей орбитой — Фол.

17 Сегодня известно, что на орбитах между Юпитером и Нептуном существует целая популяция кометоподобных небесных тел, именуемых «кентаврами». Орбиты кентавров непостоянны и имеют динамические времена жизни в несколько миллионов лет.

18 Поэтому со времён открытия Хирона астрономы предполагали, что популяция кентавров должна пополнятся из какого-то внешнего источника.19

Новые доказательства в пользу существования пояса Койпера были получены в ходе исследования комет. Давно было известно, что кометы обладают конечным временем жизни.

Когда они приближаются к Солнцу, его высокая температура испаряет летучие вещества с их поверхность в открытый космос, постепенно уничтожая их. Чтобы не исчезнуть задолго до современного этапа жизни Солнечной системы, эта популяция небесных тел должна постоянно пополнятся.

20 Предполагают, что одна из областей, из которой идёт такое пополнения — это «облако Оорта», сферический рой комет, простирающийся более чем на 50 000 а.е. от Солнца, гипотеза о существование которого была впервые выдвинута Яном Оортом в 1950 году.

21 Считается, что в этой области возникают долгопериодические кометы — такие, например, как комета Хейла-Боппа с периодом обращения в тысячелетия.

Однако есть и другая группа комет, известная как короткопериодические или «периодические» кометы — например, комета Галлея с периодом обращения менее 200 лет. К 1970-м годам темпы открытия новых короткопериодических комет стали все хуже и хуже согласовываться с предположением о том, что они происходят только из облака Оорта.

22 Для того, чтобы обьект из облака Оорта стал короткопериодической кометой, он сначала должен быть захвачен планетами-гигантами.

В 1980 году, в журнале Monthly Notices of the Royal Astronomical Society, Хулео Фернандез подсчитал что на каждую комету, которая движется из облака Оорта во внутренние области Солнечной системы, приходится 600 комет, которые выбрасываются в межзвёздное пространство. Он предположил, что кометный пояс между 35 и 50 а.е мог бы объяснить наблюдаемое количество комет.

23 Развивая работы Фернандеза, в 1988 году группа канадских астрономов, в которую входили Мартин Дункан, Томас Куин и Скот Тремен, провела серию компьютерных моделирований с целью определить, все ли короткопериодические кометы прибыли из облака Оорта.

Они обнаружили, что далеко не все короткопериодические кометы могли происходить из этого облака — в частности, потому, что они группируются вблизи плоскости эклиптики, тогда как кометы облака Оорта прилетают практически из любой области неба. После того, как описанный Фернандезом пояс был добавлен в расчёты, модель стала соответствовать наблюдениям.

24 Так как слова «Койпер» и «кометный пояс» присутствовали в первом предложении статьи Фернандеза, Тремен назвал эту гипотетическую область космоса «поясом Койпера.»В 1987 году астроном Дэвид Джьюит, из МТИ всерьёз задумался над «кажущейся пустотой внешней Солнечной системы».

6 Пытаясь обнаружить другие обьекты за орбитой Плутона, он говорил помогавшей ему аспирантке Джейн Лу: «Если этого не сделаем мы, то не сделает никто.»26 Используя телескопы обсерватории Китт-Пик в Аризоне и обсерватории Сьерро-Тололо в Чили, Джьюит и Лу вели поиски почти тем же способом, что Клайд Томбо и Чарльз Коваль, при помощи блинк-компаратора.

26 Первоначально проверка каждой пары пластинок занимала до 8 часов,27 однако потом этот процесс был сильно ускорен при помощи ПЗС-матрицы, которые, несмотря на более узкое поле зрения, более эффективно собирали свет (они сохраняли 90 процентов полученного света, тогда как фотопластинки— всего 10) и позволяли провести процесс компарации на мониторе компьютера.

Сегодня ПЗС-матрицы — основа для большинства астрономических детекторов.28 В 1988 году Джуитт перешёл в Астрономический институт Гавайского университета. Впоследствии Лу присоединилась к его работе на 2.24 -метровом телескопе обсерватории Мауна-Кеа.29 Позднее поле зрения ПЗС-матрицы было увеличено до 1024 на 1024 пикселя, что позволило ускорить поиск ещё больше.30 В конце концов, после 5 лет поисков, 30 августа 1992 года, Джуитт и Лу объявили об открытии кандидата в объекты пояса Койпера (15760) 1992 QB1.6 Через шесть месяцев они обнаружили второго кандидата, (181708) 1993 FW.31

После создания первых карт области пространства за Нептуном исследования показали, что зона, теперь называемый поясом Койпера, не является местом происхождения короткопериодических комет. На самом деле они образуются в другой, похожей области, которую называют «рассеянный диск».

Рассеянный диск образовался в те времена, когда Нептун мигрировал ко внешним границам Солнечной системы в область, позднее ставшей поясом Койпера, которая тогда была значительно ближе к Солнцу, и оставил за собой семейство динамически стабильных объектов, на движение которых он никак не может воздействовать (собственно пояс Койпера), а также отдельную группу объектов, перигелии которых достаточно близки к Солнцу для того, чтобы Нептун мог возмущать их орбиты (рассеянный диск). Поскольку рассеянный диск динамически активен, тогда как пояс Койпера динамически стабилен, первый сегодня считается наиболее вероятным источником короткопериодических комет.Признавая заслуги Кеннета Эджворта, астрономы иногда называют пояс Койпера «поясом Эджворта-Койпера». Однако Брайан Марсден считает, что ни один из этих учёных не заслуживает такой чести: «Ни Эджворт, ни Койпер не писали ни о чём похожем на то, что мы сейчас наблюдаем — это сделал Фред Уиппл».32 Есть и ещё одно мнение — Дэвид Джуитт сказал по поводу этой проблемы следующее: «Если говорить о чьём-то имени… то Фернандез более всех заслуживает чести считаться человеком, предсказавшим пояс Койпера».13 Некоторые группы учёных предлагают использовать для объектов этого пояса термин транснептуновый объект (ТНО), как наименее спорный. Однако это не синонимы, так как к ТНО относят все объекты обращающиеся за орбитой Нептуна, а не только объекты пояса Койпера.

Источник: https://fanparty.ru/fanclubs/space-and-ufo/tribune/32070

Ссылка на основную публикацию