Возраст вселенной – все о космосе

Этапы Большого заблуждения. Возраст космических объектов

Звезда – это газовый шар.  Рождение, жизнь и смерть звёзды  определяются законами гравитации и ядерной физики. Для рождения звезды необходимо, чтобы возник уплотнённый газовый фрагмент достаточно большой массы.

Это может произойти либо при столкновении больших газовых облаков, либо при разделении газо-пылевой межзвездной среды на две фазы – плотные холодные облака и разреженную среду с более высокой температурой.  В возникшем газово-пылевом уплотнении начинается гравитационное сжатие.

Сжимающееся под действием гравитации газовое облако называются протозвездой.

Сжатие протозвезды включает несколько этапов. Оно начинается в режиме свободного падения частиц к центру облака. Постепенно протозвезда разделяется на компактное ядро и протяженную более разреженную оболочку. На начальной стадии сжатия протозвезда прозрачна для собственного теплового излучения.

Но по мере уплотнения ядра оно становится непрозрачным для теплового излучения из центра. Выделяющаяся в ядре энергия медленно просачивается к поверхности, а температура ядра повышается. Когда температура ядра достигнет 2000 К, начинается разложение молекул H2 на атомы водорода.

С этого момента начинается этап быстрого сжатия ядра, Образуется новое более компактное ядро с температурой порядка 2·104 К, на которое падают остатки первого ядра и оболочки протозвезды. Дальнейший рост массы ядра продолжается до тех пор, пока все вещество упадет на звезду.

После этого ядро также продолжает сжиматься под действием гравитации, а его температура возрастает до тех пор, пока не достигнет величины, достаточной для начала термоядерных реакций. С началом термоядерных реакций сжатие ядра прекращается.

Продолжительность периода сжатия зависит от массы звезды – чем больше масса, тем период сжатия короче. Типичная продолжительность стадии сжатия не превышает миллиона лет. В течение этого периода звезда излучает в инфракрасном диапазоне.

При достижении температуры в центре звезды ~ 106 К начинается термоядерное горение водорода. С этого момента наступает наиболее длительный стабильный период существования звезды. Он продолжается миллиарды лет. При горении водорода из четырёх атомов водорода образуется один атом гелия.

Горение происходит в ограниченной центральной области звезды и сопровождается выделением большого количества энергии. Температура ядра звезды повышается до 107 K и в дальнейшем остаётся относительно постоянной.   Передача энергии из глубины звезды во внешние слои происходит двумя путями:     1.

В результате движения более горячего вещества из центральной части звезды, во внешние менее плотные слои (конвекция).

    2. За счёт переизлучения фотонов. Фотоны, испускаемые атомами, находящимися в центре, поглощаются другими атомами и вновь излучаются. Такой процесс происходит многократно. При этом энергии переизлучаемых фотонов постепенно уменьшаются. В случае Солнца, например, время диффузии энергии за счёт переизлучения от центра к поверхности составляет около 60 млн. лет.

После того, как в звезде выгорит весь водород, начинается ускоренный переход звезды к конечной фазе жизни. Процессы, которые начнутся в звезде, зависят от её массы. Звезда малой массы может превратиться в красный карлик и, медленно остывая, долго светить в инфракрасном  диапазоне.

В звёздах с массами, большими 0,4 солнечных масс, начнётся процесс горения гелия с образованием ядер преимущественно углерода, кислорода и неона. Геливое горение не столь продолжительно, как водородное и длится всего несколько миллионов лет.

В процессе ядерного горения появляются всё более тяжёлые химические элементы, вплоть до железа. Гелиевое ядро сильно сжимается, температура в нем повышается до ста миллионов градусов. Для очень массивных звёзд процесс завершается взрывом с образованием элементов тяжелее железа, включая радиоактивные элементы.

  Звезды средних масс заканчивают свою эволюцию сбросом оболочки и превращением в белый карлик или нейтронную звезду.

Таким образом, для любой звезды неизбежны следующие два этапа эволюции: 1) краткий период гравитационного сжатия и 2) длительный период водородного горения.

А для звезды, с массой, большей, чем 0,4 солнечной массы, после этих двух периодов наступает третий, непродолжительный период гелиевого горения, который закончится либо взрывом звезды, либо сбросом оболочки. В процессе гелиевого горения звезда обогащается химическими элементами тяжелее гелия.

В астрономии  элементы тяжелее гелия принято называть металлами. Относительная концентрация металлов в  звезде называется металличностью. Металличность определяют по спектру звезды.

Из процесса эволюции достаточно массивной звезды следует, что на заключительном этапе развития звезды её металличность будет высокой, даже в том случае, если протозвезда состояла только из водорода и гелия. Что же касается начального этапа развития звезды, то никаких однозначных предсказаний о металличности звезды дать нельзя.

Всё зависит от того, в какой среде зародилась звезда. Если звезда возникла из уплотнения, порождённого столкновением двух газовых облаков, то изначально она будет малометалличной. Если же звезда зародилась в газопылевом облаке с высокой концентрацией пыли, то уже на начальной стадии развития её спектр покажет большое содержание металлов.

Поэтому не может быть однозначного соответствия между металличностью звезды и её возрастом.

Попытки установить связь между возрастом звезды и её металличностью продолжаются до настоящего времени. Для этого необходим детальный анализ излучения отдельных звёзд, что возможно только для нашей галактики Млечный Путь и её ближайших галактик-спутников, поскольку другие галактики на отдельные звёзды неразрешимы.

Большой вклад в решение проблемы возраст-металличность сделан отделом космических исследований НИИ физики Южного федерального университета и персонально её сотрудником  доктором физико-математических наук В.А. Марсаковым http://www.dissercat.com/content/struktura-i-evolyutsiya-podsistem-galaktiki).

Вот основные результаты по проблеме возраст-металличность.

Было известно, что наша Галактика состоит из нескольких подсистем (рис.1). Звёздная составляющая Галактики (балдж, тонкий диск и толстый диск) окружена большим газо-пылевым гало. 

Рис.1

В процессе более чем двадцатилетнего исследования В.А. Марсаковым  было установлено существование ещё одной звёздной подсистемы Галактики – так называемого аккрецированного гало.

Оно состоит из малометалличных высокоскоростных звезд, которые попали в Галактику из разрушенных её приливными силами карликовых галактик-спутников. Скорости высокоскоростных звёзд могут превышать 1000 км/с. На рис.2 показан снимок одной из таких звёзд (http://kosmosnov.blogspot.

ru/2014/02/Kappa-Cassiopeiae.html): «Красная дуга на этом снимке является гигантской ударной волной, созданной скоростной звездой, известной как Каппа Кассиопеи. …По отношению к своим звездным соседям она движется со скоростью 1100 километров в секунду.

…Бело-голубая звезда Каппа Кассиопеи видна на небе невооруженным взглядом в созвездии Кассиопеи, однако её ударную волну можно разглядеть только в инфракрасном свете».

Рис. 2

Трудность исследования связи между возрастом и металличностью звёзд заключается в том, что  искомые изменения параметров внутри каждой галактической подсистемы, как правило, не превышают ошибок измерения. Конечно, при усреднении ошибки отдельных измерений должны частично взаимно уничтожаться.

Но для получения статистически значимых результатов нужно иметь огромное количество астрометрических и фотометрических данных для многих тысяч звезд. Получение таких данных стало возможным только с развитием сети наземных и спутниковых автоматических станций наблюдения и создания на их основе объёмных каталогов.

Накопленные данные позволили определить для значительной части звёзд температуры, абсолютные звездные величины, металличности, пространственные скорости, галактические орбиты и многое другое. В результате проделанной работы было установлено, что однозначной связи между возрастом и металличностью звёзд не существует.

Причём, для звёзд любого возраста, и молодых и старых.

Окончательный результат исследований  В.А. Марсаковым был опубликован в 2007 году. Наличие однозначной связи между возрастом и металличностью звёзд ставилось под сомнение другими авторами и ранее.

В официальной же астрофизике в настоящее время принята такая концепция: чем старее звезда, тем ниже её металличность. Здесь требуется уточнить понятие возраста звезды – звезда считается тем старее, чем ближе время её зарождения к моменту Большого взрыва.  Эта официальная концепция возникла из представления о первичном нуклеосинтезе, происходившем в процессе Большого Взрыва.

Считается, что при первичном нуклеосинтезе во Вселенной возникли водород (75 %), гелий (25 %) и следы лития и бериллия. Но такой состав Вселенной не позволял объяснить наблюдаемый химический состав звёзд галактики Млечный Путь. Поэтому была предложена следующая схема. Первое поколение звёзд, состояло только из водорода и гелия и не содержало металлов.

Эти звёзды были чрезвычайно массивны.  В течение их короткой жизни в них синтезировались элементы тяжелее гелия. Затем эти звёзды погибали в результате взрыва сверхновых, и синтезированные элементы распределялись по Вселенной. Второе поколение звёзд  родилось из материала звёзд первого поколения и уже имело металличность, но довольно малую.

Звёзды третьего поколения возникли из материала разрушившихся звёзд второго поколения. Звёзды третьего поколения – это самые молодые звёзды. Они содержат самое высокое количество металлов. Галактика Млечный Путь состоит из звёзд третьего поколения.

Поскольку каждое следующее поколение рождается из газа, получившегося после распада звёзд предыдущего поколения, то  в одном месте в одно и то же время звёзды разных поколений появиться не могут.

В соответствии с этой схемой была разработана методика расчёта возраста звезды по её металличности, которой пользуются до настоящего времени.

Но постепенно стали появляться наблюдения, не укладывающиеся в схему из трёх последовательных поколений звёзд. Первые такие наблюдения относятся к малометалличным скоростным звёздам, составляющим, как установлено В.А. Марсаковым  аккрецированное гало нашей Галактики.

  Первой такой звездой была звезда-субгигант HD 140283 в созвездии Весов, расположенная в 190,1 световых годах от Земли. Звезду относят ко второму поколению звёзд с малым содержанием металлов. Эта звезда была обнаружена астрономами ещё более ста лет назад. Она привлекла к себе внимание именно высокой скоростью движения по небу.

Возраст звезды согласно первоначальной оценке равнялся 16 млрд. лет. Поскольку это разительно отличалось от принятого возраста Вселенной (13,7 млрд. лет), то занялись уточнением возраста звезды. «Уточнённая» оценка была такой:  возраст звезды превышает 13,2 миллиарда лет (насколько превышает, не конкретизировалось).

Затем уточнением возраста звезды занялась группа астрономов под руководством Х. Бонда из Университета штата Пенсильвания. С помощью телескопа Хаббл было уточнено расстояние до звезды. После чего был заявлен новый возраст звезды – 14,5 млрд. лет. Это также не соответствует возрасту Вселенной 13,7 млрд. лет. Но Х.

Бонд полагает, что несоответствие можно объяснить неточно известным химическим составом звезды. Однако на всякий случай осторожно заявляет: «Может быть, ошибается космология, а может наши знания физики звезд неверны». Разумная осторожность. Потому что объяснить, как в достаточно массивной звезде за 14,5 млрд.

лет не прошли процессы водородного, а затем  гелиевого горения (они обогащают звезду металлами) вряд ли возможно.

Читайте также:  Энергия нашего солнца - все о космосе

Наличие малометалличных звёзд в галактике Млечный Путь само по себе свидетельствует об ошибочности схемы трёх последовательных поколений звёзд. Поскольку каждое следующее поколение рождается из газа, получившегося после распада звёзд предыдущего поколения, то  в одно и то же время звёзды разных поколений сосуществовать не должны. Но на этом факте старались особо не заострять внимание.

Но вот в 2007 году телескоп Хаббл в шаровом скоплении NGC 2808 обнаружил все три поколения звёзд сосуществующих одновременно. Шаровое скопление NGC 2808 содержит более одного миллиона звёзд и является одним из самых крупных из 150 известных объектов своего класса. Затем одновременное сосуществование нескольких поколений звёзд было обнаружено в другом шаровом скоплении – Омега Центавра.

Эти два наблюдения окончательно лишают правдоподобия схему последовательных поколений звёзд, предложенную официальной космологией для объяснения химического состава нашей Галактики. К настоящему времени были обследованы в поисках нескольких поколений светил только два шаровых скопления.

Но уже готовится исследование и других шаровых скоплений на предмет сосуществования различных поколений звёзд.

Но и это ещё не всё, что свидетельствует о дискредитации схемы звездных поколений. В 2004 г. телескоп Хаббл на расстоянии всего 45 млн.

световых лет от Млечного Пути обнаружил галактику, названную Zwicky 18,  состоящую почти исключительно из водорода и гелия. Из более тяжелых элементов в ней обнаружены лишь следы углерода, азота и кислорода.

Спектральный анализ показал, что ее звезды не старше 500 млн. лет. Таким образом, однозначно получалось, что это очень молодая галактика.

Поскольку считалось, что формирование галактик происходило в течение первого миллиарда лет после Большого Взрыва, но никак не через 13 млрд. лет, был предложен довольно фантастический сценарий рождения галактики сразу после Большого взрыва (http://www.popmech.ru/article/2562-galaktika-s-syurprizom/).

Может быть этот сценарий и стали бы рассматривать всерьез, но в конце  того же 2004 года американское космическое агентство NASA опубликовало сообщение об обнаружении на сравнительно небольшом расстоянии от Млечного Пути  более 30 очень крупных галактик на стадии зарождения (http://forums.airbase.

ru/2004/12/t30587–samaya-molodaya-galaktika.7731.html). Для этих тридцати случаев фантастические сценарии придумывать уже не имело смысла. Оставалось признать, что рождение малометалличных звёзд и даже целых галактик происходит во Вселенной во всё время её жизни.

Вопрос упирался теперь только в то, а каково же на самом деле время жизни Вселенной.

В настоящее время возраст Вселенной признаётся равным 13.77+-0.059 млрд. лет. Это следует из красного смещения излучения, истолкованного как разбегание галактик, и нестационарного решения уравнений общей теории относительности (ОТО) Эйнштейна. Но, во-первых, красное смещение имеет и другое, альтернативное объяснение.

А, во-вторых, любое решение ОТО, в том числе и нестационарное, не имеет ни какой предсказательной силы, потому что в ОТО обнаружены серьёзные физические несоответствия (http://astrogalaxy.ru/918.html). Поэтому на данном этапе утверждать что-либо о возрасте Вселенной нет никаких оснований.

Напротив, наблюдения последних лет, свидетельствующие о продолжающемся зарождении звёзд и галактик, дают основание для утверждения о вечном существовании Вселенной.

Подведём итог сделанного обзора.  Анализ астрономических наблюдений последних лет показывает:
реальный возраст звёзд, галактик и самой Вселенной, не согласуется с возрастом этих космических объектов, найденным по методикам, разработанным на основании теории Большого взрыва.

Источник: https://kosmos-x.net.ru/publ/kosmos/ehtapy_bolshogo_zabluzhdenija_vozrast_kosmicheskikh_obektov/12-1-0-268

Откуда мы знаем, сколько лет Вселенной? :

Немаловажную роль в определении возраста Вселенной играет выделение этапов её развития от начала Большого взрыва.

Эволюция Вселенной и этапы её развития

На сегодня принято выделять следующие фазы развития Вселенной:

  1. Планковское время – период от 10-43 до 10-11 секунд. В этот короткий промежуток времени, как полагают учёные, гравитационная сила «отделилась» от остальных сил взаимодействия.
  2. Эпоха рождения кварков – от 10-11 до 10-2 секунд. В этот период произошло зарождение кварков и разделение известных физических сил взаимодействия.
  3. Современная эпоха – началась через 0,01 секунду после Большого взрыва и длится сейчас. В этот промежуток времени образовались все элементарные частицы, атомы, молекулы, звезды и галактики.

Стоит отметить, что важным периодом в развитии Вселенной считается время, когда она стала прозрачной для излучения – через триста восемьдесят тысяч лет после Большого взрыва.

Методы определения возраста Вселенной

Сколько лет Вселенной? Перед тем как пытаться это выяснить, стоит заметить, что её возраст считается от момента Большого взрыва. На сегодня никто не может утверждать с полной уверенностью, сколько лет назад появилась Вселенная. Если просматривать тенденцию, то со временем учёные приходят к выводу, что её возраст больше, чем считалось ранее.

Последние вычисления учёных показывают, что возраст нашей Вселенной составляет 13,75±0,13 миллиардов лет. По мнению некоторых специалистов, конечная цифра может быть пересмотрена в ближайшее время и скорректирована до пятнадцати миллиардов лет.

Современный способ оценки возраста космического пространства базируется на изучении «древних» звёзд, скоплений и неразвившихся объектов космоса. Технология вычисления возраста Вселенной – сложный и ёмкий процесс. Мы рассмотрим лишь некоторые принципы и способы расчётов.

Массовые скопления звёзд

Для того чтобы определить, сколько лет Вселенной, учёные исследуют участки космоса с большим скоплением звёзд. Находясь примерно в одной области, тела имеют сходный возраст. Одновременное зарождение звёзд даёт возможность учёным определить возраст скопления.

Используя теорию «эволюции звёзд», строят графики и проводят многолинейные вычисления. Учитываются данные объектов с одинаковым возрастом, но разной массой.На основании полученных результатов удается определить возраст скопления. Предварительно вычислив расстояние до группы звёздного скопления, учёные определяют возраст Вселенной.

Получилось ли точно определить, сколько лет Вселенной? По расчётам учёных результат оказался неоднозначным – от 6 до 25 миллиардов лет. К сожалению, данный метод имеет большое количество сложностей. Поэтому существует серьезная погрешность.

Древние обитатели космоса

Для того чтобы понять, сколько лет существует Вселенная, учёные ведут наблюдение за белыми карликами в шаровых скоплениях. Они являются следующим эволюционным звеном после красного гиганта.В процессе перехода от одной стадии к другой вес звезды практически не меняется. Белые карлики не имеют термоядерного синтеза, поэтому излучают свет за счёт накопленного тепла.

Если знать зависимость между температурой и временем, получится установить возраст звезды. Возраст наиболее древнего скопления оценивается примерно в 12-13,4 миллиарда лет. Однако данный способ сопряжён со сложностью наблюдения за достаточно слабыми источниками излучения. Необходимы высокочувствительные телескопы и оборудование.

Для решения поставленной задачи задействован мощный космический телескоп Хаббл.

Первичный «бульон» Вселенной

Для того чтобы определить, сколько лет Вселенной, учёные наблюдают за объектами, состоящими из первичной субстанции. Они дожили до нашего времени благодаря медленной скорости эволюции.

Исследуя химический состав подобных объектов, учёные сравнивают его с данными по термоядерной физике. На основании полученных результатов определяется возраст звезды или скопления. Учёными проведено два независимых исследования.

Результат оказался достаточно сходным: по первому – 12,3-18,7 миллиарда лет и по второму – 11,7-16,7.

Расширяющаяся Вселенная и тёмная материя

Существует большое количество моделей определения возраста Вселенной, но результаты весьма спорны. На сегодняшний день есть более точный способ. Он основан на том, что космическое пространство постоянно расширяется с момента Большого взрыва.

Изначально пространство было меньше, с тем же количеством энергии, что и сейчас.По мнению учёных, со временем фотон «теряет» энергию, а длина волны увеличивается.

Основываясь на свойствах фотонов и наличии чёрной материи, провели расчёт возраста нашей Вселенной. Учёным удалось определить возраст космического пространства, он составил 13,75±0,13 миллиардов лет.

Этот способ расчёта получил название Lambda-Cold Dark Matter – современная космологическая модель.

Результат может оказаться ошибочным

Однако никто из учёных не утверждает, что этот результат является точным. Эта модель включает в себя множество условных допущений, которые взяты за основу.

Однако на данный момент этот способ определения возраста Вселенной считается наиболее точным. В 2013 году удалось определить скорость расширения Вселенной – постоянную Хаббла. Она составила 67,2 километра в секунду.

Используя более точные данные, учёные определили, что возраст Вселенной составляет 13 миллиардов 798 миллионов лет.

Однако мы понимаем, что в процессе определения возраста Вселенной использовались общепринятые модели (сферически плоская форма, наличие холодной тёмной материи, скорость света как максимальная постоянная величина). Если наши предположения об общепринятых константах и моделях в будущем окажутся ошибочными, то это повлечёт за собой пересчёт полученных данных.

Источник: https://www.syl.ru/article/306949/otkuda-myi-znaem-skolko-let-vselennoy

Сколько лет Вселенной по расчетам ученых?

Каков возраст нашей Вселенной? Этим вопросом озадачивалось не одно поколение астрономов и продолжат ломать голову ещё много лет, пока не будет разгадана тайна мироздания.

Как известно, уже в 1929 году космологами из Северной Америки было установлено, что Вселенная растет в своих объемах. Или говоря астрономическим языком, имеет постоянное расширение.

Автором метрического расширения Вселенной является американец Эдвин Хаббл, который вывел постоянную величину, характеризующую неуклонное увеличение космического пространства.

Так сколько же Вселенной лет? Еще десять лет назад считалось, что её возраст находится в пределах 13,8 миллиардов лет.

Эта оценка была получена, исходя из космологической модели, в основе которой лежит постоянная Хаббла.

Однако на сегодняшний день получен более точный ответ о возрасте Вселенной, благодаря кропотливой работе сотрудников обсерватории ЕКА (Европейское Космическое Агентство) и передовому телескопу «Planck».

Сканирование космического пространства телескопом «Planck»

Телескоп был запущен в активную работу еще в мае 2009 года для определения максимально точно возможного возраста нашей Вселенной.

Функционал телескопа «Planck» был нацелен на длительный сеанс сканирования космического пространства, с целью составить наиболее объективную картину излучения всех возможных звездных объектов, полученных в результате так называемого Большого взрыва.Телескоп Planck

Длительный процесс сканирования проводился в два этапа.

В 2010 году были получены предварительные результаты исследований, а уже в 2013 году подвели окончательный итог исследования космического пространства, который дал ряд весьма любопытных результатов.

Итог исследовательской работы ЕКА

Ученые ЕКА опубликовали интересные материалы, в которых, на основе собранных «оком» телескопа «Planck» данных, удалось уточнить постоянную Хаббла. Оказывается, скорость расширения Вселенной равняется 67,15 километрам в секунду на один парсек.

Чтобы было понятнее, один парсек – это космическое расстояние, которое можно преодолеть за 3,2616 наших световых лет. Для большей наглядности и восприятия, можно представить две галактики, которые отталкиваются друг от друга со скоростью около 67 км/с. Цифры по космическим масштабам мизерные, но, тем не менее, это установленный факт.

Читайте также:  Звездные скопления и ассоциации - все о космосе

Благодаря данным, собранным телескопом «Planck», удалось уточнить возраст Вселенной – это 13,798 миллиардов лет.

Изображение полученное на основе данных телескопа Planck

Данная исследовательская работа ЕКА привела к уточнению содержания во Вселенной массовой доли не только «обычной» физической материи, которая равняется 4,9 %, но и темной материи, равной теперь 26,8 %.

Попутно телескоп «Planck» выявил и подтвердил существование в далеком космическом пространстве так называемого холодного пятна, обладающего супер низкой температурой, которому пока нет внятных научных объяснений.

Другие способы оценки возраста Вселенной

Кроме космологических методов, узнать сколько Вселенной лет можно, например, по возрасту химических элементов. В этом поможет явление радиоактивного распада.

Ещё одним из способов является оценка возраста звезд.

Оценив яркость старейших звезд — белых карликов, группа ученых в 1996 году получила результат: возраст Вселенной не может быть меньше 11,5 миллиардов лет.

Это подтверждает данные о возрасте Вселенной, полученные на основе уточненной постоянной Хаббла.

Источник: https://www.techcult.ru/space/2308-skolko-let-vselennoj

Откуда мы знаем возраст Вселенной?

Если вы не занимаетесь астрономией на уверенном уровне, вы наверняка хоть раз задавались вопросом: сколько существует независимых способов измерения возраста Вселенной? Ученые рады были бы сказать, что есть множество линий доказательств, которые указывают на возраст Вселенной в 13,8 миллиарда лет, подобно тому, как есть множество независимых указателей в пользу существования темной материи. Но на самом деле, есть только два хороших свидетельства, и одно лучше другого.

«Хороший» способ узнать возраст Вселенной — изучить тот факт, что она расширяется и остывает, и признать, что в прошлом она была горячее и плотнее.

Если мы вернемся в древнейшие времена, мы выясним, что объем Вселенной был меньше, и не только материя была сбита плотнее, но и длины волн отдельных фотонов (частиц света) были короче, поскольку расширение Вселенной растянуло их до нынешней длины.

Поскольку длина волны фотона определяет его энергию и температуру, чем короче длина волны фотона, тем выше его энергия и температура. По мере того как мы будем возвращаться все дальше и дальше во времени, температура будет расти все выше и выше, пока в какой-то момент мы не достигнем самых первых стадий Большого Взрыва.

Это важно, запомним: есть «ранняя стадия» горячего Большого Взрыва.

Если бы у нас была возможность протягивать щуп «бесконечно» в обратном направлении, мы бы достигли сингулярности, в которой известная нам физика не работала бы. В нашем современном понимании самой ранней Вселенной известно, что инфляционному состоянию предшествовал горячий и плотный Большой Взрыв, а инфляционное состояние длилось неопределенное время.

Поэтому когда мы говорим о «возрасте Вселенной», мы говорим о том, сколько времени прошло с тех пор, как Вселенную можно было впервые описать как Большой Взрыв, и до сегодняшнего дня.

Согласно законам общей теории относительности, если у вас будет Вселенная вроде нашей, которая:

  • а) с однородной плотностью на крупнейших масштабах;
  • б) имеет одни и те же законы и общие свойства во всех местах;
  • в) одинакова во всех направлениях и
  • г) в которой Большой Взрыв произошел во всех местах одновременно и всюду, то

есть уникальная связь между возрастом Вселенной и ее расширением в процессе творения ее истории.

Другими словами, если бы мы могли измерить расширение Вселенной сегодня и то, как она расширилась за всю свою историю, мы бы точно узнали, какие различные компоненты ее составляют. Мы узнали это из ряда наблюдений, включая:

  1. Прямые измерения яркости и расстояния до объектов во Вселенной вроде звезд, галактик и сверхновых, которые позволили нам выстроить линейку космических расстояний.
  2. Измерения крупномасштабной структуры, кластеризации галактик и барионных акустических колебаний.
  3. Колебания в микроволновом космическом фоне, такой себе «снимок» Вселенной, когда ей было всего 380 000 лет.

Вы собираете все это воедино и получаете Вселенную, которая сегодня состоит на 68% из темной энергии, на 27% из темной материи, на 4,9% из обычной материи, на 0,1% из нейтрино, на 0,01% из излучения, ну и всякого «по мелочи».

Затем вы смотрите на расширение Вселенной сегодня и экстраполируете его обратно во времени, собирая воедино историю расширения Вселенной, а значит и ее возраст.

Мы получаем цифру — наиболее точно от Планка, однако дополненную другими источниками вроде измерений сверхновых, ключевого проекта HST и Sloan Digital Sky Survey — возраста Вселенной, 13,81 миллиарда лет, плюс-минус 120 миллионов лет. Мы уверены в возрасте Вселенной с 99,1-процентной вероятностью, и это весьма круто.

У нас есть целый ряд различных наборов данных, которые указывают на такой вывод, но они, на деле, получены с помощью одного метода.

Нам просто повезло, что есть согласованная картина, все точки которой указывают в одном направлении, но в действительности невозможно точно назвать возраст Вселенной.

Все эти точки предлагают разные вероятности, и где-то на пересечении рождается наше мнение относительно возраста нашего мира.

Если бы Вселенная обладала теми же свойствами, но состояла на 100% из обычной материи (то есть без темной материи или темной энергии), нашей Вселенной было бы всего 10 миллиардов лет.

Если бы Вселенная состояла из обычной материи на 5% (без темной материи и темной энергии), а постоянная Хаббла составляла бы 50 км/с/Мпк, а не 70 км/с/Мпк, нашей Вселенной было бы 16 миллиардов лет.

С комбинацией всего этого, мы почти наверняка можем сказать, что возраст Вселенной — 13,81 миллиарда лет. Выяснить эту цифру — огромный подвиг для науки.

Этот метод выяснения по праву лучший. Он главный, уверенный, наиболее полный и проверен множеством разных улик, указывающих на него. Но есть и другой метод, и он весьма полезен для проверки наших результатов.

Он сводится к тому, что мы знаем, как живут звезды, как они сжигают свое топливо и умирают. В частности, мы знаем, что все звезды, пока живут и прожигают основное топливо (синтезируя гелий из водорода), обладает определенной яркостью и цветом, и остаются при этих специфических показателях конкретный отрезок времени: пока в ядрах не заканчивается топливо.

В этот момент яркие, синие и массивные звезды начинают эволюционировать в гиганты или сверхгиганты.

Глядя на эти точки в скоплении звезд, которые образовались в одно время, мы можем выяснить — если, конечно, знаем принцип работы звезд — возраст звезд в кластере. Глядя на старые шаровые скопления, мы выясняем, что эти звезды чаще всего пришли к жизни примерно 13,2 миллиарда лет назад. (Впрочем, есть небольшие разбегания в миллиард лет).

Возраст в 12 миллиардов лет довольно распространен, но возраст в 14 миллиардов лет и больше — это что-то странное, хотя был период в 90-х, когда возраст в 14-16 миллиардов лет упоминался довольно часто. (Улучшенное понимание звезд и их эволюции существенно занизили эти цифры).

Итак, у нас есть два метода — космической истории и измерения локальных звезд, — которые указывают на то, что возраст нашей Вселенной — 13-14 миллиардов лет. Никого не удивит, если возраст уточнится до 13,6 или даже до 14 миллиардов лет, но вряд ли это будет 13 или 15. Если вас будут спрашивать, говорите, что возраст Вселенной 13,8 миллиарда лет, претензий к вам не будет.

Источник: https://hi-news.ru/science/otkuda-my-znaem-vozrast-vselennoj.html

Какой возраст у Вселенной — объяснение для детей

Астрономия для детей Ответы на частые вопросы > Какой возраст у Вселенной

Карта, отображающая оставшееся после Большого Взрыва фоновое излучение. Создана в 2013 году космической Обсерваторией Планка. Вы видите древнейшее свечение Вселенной. Это помогает определить ее возраст.

Для самых маленьких известно, что возраст измеряется числами.

Но родители или в школе должны объяснить детям, что в вопросе Вселенной все намного сложнее. Считается, что ей примерно 13.8 миллиардов лет.

Но как исследователи смогли вывести такую цифру? Для этого придумали два подхода: исследование древнейших объектов или же замеры скорости расширения.

Ограничения в возрасте

Начать объяснение для детей стоит с напоминания, что Вселенная не способна быть младше своих объектов. Так что, находя самые старые звезды, мы можем устанавливать возрастные границы. Цикл существования звезды всегда рассчитывается на основе ее массы.

Чем она больше, тем меньше срок. Например, звезда, которая в 10 раз превосходит наше Солнце, истратит внутреннее топливо за 20 миллионов лет. А вот та, что достигнет лишь половины его массы, сможет светить больше 20 миллиардов лет.

Масса также оказывает воздействие на уровень яркости (светимость) – чем больше масса, тем ярче.

Плотные звездные скопления (шаровые) похожи по своим характеристикам. Наиболее известные для ученых содержат звезды с возрастом в 11-18 миллиардов лет.

Дети могут удивиться такому большому скачку, но он возникает из-за трудностей измерения дистанции к группам. Это изменяет оценивание яркости и массы.

Например, если расположена дальше, чем предполагалось в расчетах, то она окажется намного ярче, массивнее, а значит и моложе.

Такая неопределенность вынуждает ставить минимальный предел для возраста – 11 миллиардов лет. То есть, она способна быть «старее», но уж точно не моложе.

Расширение

Родители или в школе должны объяснить для самых маленьких детей, что наша Вселенная не замерла, она расширяется. Выяснив скорость этого процесса, можно рассчитать и возраст. Это число называют «константа Хаббла», и оно играет наиболее важную роль во всех этих вычислениях.

На значение константы влияет ряд критериев. Это тип доминирующей материи. Исследователям необходимо определить часть регулярной и темного материи в темной энергии. Имеет вес и плотность. Чем она ниже, тем старше Вселенная.

Чтобы получить точные сведения о составных компонентах и плотности, исследователи используют миссию НАСА WMAP (изучение реликтового излучения) и космическую обсерваторию Планка. Измеряя остатки теплового излучения от Большого Взрыва, можно вычислить плотность, состав и скорость.

В 2012 году WMAP определил возрастные показатели в 13.772 миллиарда лет (неопределенность – 59 миллионов лет). В 2013 году Обсерватория Планка показала результаты в 13.82 миллиарда. Они попадают в лимит (11 миллиардов лет).

Источник: http://v-kosmose.com/kosmos-dlya-detei/kakoy-vozrast-u-vselennoy/

Видимая Вселенная

Портал Kvant.Space – это информационный ресурс, на котором Вы сможете получить много полезных и интересных знаний, связанных с Космосом. В первую очередь речь пойдет о нашей и других Вселенных, о небесных телах, черных дырах и явлениях в недрах космического пространства.

Читайте также:  Эпиметей — спутник сатурна - все о космосе

Совокупность всего существующего, материи, отдельных частиц и пространства между этими частицами называют Вселенной. По представлениям ученых и астрологов, возраст Вселенной составляет примерно 14 миллиардов лет. По размерам видимая часть Вселенной занимает около 14 млрд световых лет.

А некоторые утверждают, что Вселенная простирается на 90 миллиардов световых лет. Для большего удобства в подсчетах подобных расстояний принято применять величину парсек.

Один парсек равен 3,2616 световых лет, то есть парсек – это расстояние, по которому средний радиус орбиты Земли просматривается под углом одной угловой секунды.

Вооружившись данными показателями, можно подсчитать космическое расстояние от одного объекта к другому. К примеру, расстояние от нашей планеты до Луны составляет 300000 км, или 1 световая секунда. Следовательно, до Солнца это расстояние увеличивается до 8,31 световых минут.

Всю свою историю люди пытались разгадать загадки, связанные с Космосом и Вселенной. В статьях портала Kvant.Space Вы сможете узнать не только о Вселенной, но и о современных научных подходах к ее изучению. Весь материал опирается на самые передовые теории и факты.

Следует заметить, что во Вселенную входит большое число известных людям различных объектов. Самые широко известные среди них – это планеты, звезды, спутники, черные дыры, астероиды и кометы.

О планетах на данный момент понятно больше всего, поскольку на одной из них мы живем. У некоторых планет есть собственные спутники. Так, у Земли есть свой спутник – Луна.

Помимо нашей планеты, есть еще 8, которые вращаются вокруг Солнца.

В Космосе много звезд, но каждая из них не похожа друг на друга. Они имеют разные температуры, размеры и яркость. Поскольку все звезды разнятся, их классифицируют следующим образом:

– белые карлики;

– гиганты;

– сверхгиганты;

– нейтронные звезды;

– квазары;

– пульсары.

Самое плотное известное нам вещество – это свинец. В некоторых планетах плотность их же вещества может в тысячи раз превосходить плотность свинца, что ставит перед учеными много вопросов.

Все планеты вращаются вокруг Солнца, но оно также не стоит на месте. Звезды могут собираться в скопления, которые, в свою очередь, также вращаются вокруг пока не известного нам центра. Эти скопления называются галактиками.

Наша галактика называется Млечный путь. Все проведенные исследования на данный момент говорят, что большая часть материи, которую создают галактики, пока что для человека невидима. Из-за этого ее назвали темной материей.

Самыми интересными считаются центры галактик. Некоторые астрономы считают, что возможным центром галактики является Черная дыра. Это уникальное явление, образовавшееся в результате эволюции звезды. Но пока все это лишь теории. Проведение экспериментов или исследование подобных явлений пока что невозможно.

Помимо галактик, во Вселенной присутствуют туманности (состоящие из газа, пыли и плазмы межзвездные облака), реликтовое излучение, которые пронизывают все пространство Вселенной, и многие другие малоизвестные и даже неизвестные вообще объекты.

Кругооборот эфира Вселенной

Симметрия и равновесие материальных явлений – это главный принцип структурной организации и взаимодействия в природе. Причем во всех формах: звездной плазмы и вещества, мирового и высвобожденного эфиров.

Вся суть таких явлений состоит в их взаимодействиях и превращениях, большинство из которых представлены невидимым эфиром. Его еще именуют реликтовым излучением. Это микроволновое космическое фоновое излучение, имеющее температуру 2,7 К.

Бытует мнение, что именно этот колеблющийся эфир и является первоосновой для всего наполняющего Вселенную. Анизотропия распределения эфира связана с направлениями и интенсивностью его перемещения в разных областях невидимого и видимого пространства.

Вся трудность изучения и исследования вполне сопоставима с трудностями изучения турбулентных процессов в газах, плазмах и жидкостях материй.

Почему многие ученые считают, что Вселенная многомерная?

После проведения экспериментов в лабораториях и в самом Космосе были получены данные, из которых можно предположить, что мы живем во Вселенной, в которой размещение любого объекта можно охарактеризовать временем и тремя пространственными координатами.

Из-за этого возникает предположение, что Вселенная четырехмерная. Однако некоторые ученые, разрабатывая теории элементарных частиц и квантовой гравитации, возможно, придут к мнению, что существование большого количества измерений просто необходимо.

Некоторые модели Вселенной не исключают такого их количества, как 11 измерений.

Следует учесть, что существование многомерной Вселенной возможно при высокоэнергетических явлениях – черные дыры, большой взрыв, барстеры. По крайней мере, это одна из идей ведущих космологов.

Модель расширяющейся Вселенной базируется на общей теории относительности. Ее предложили для адекватного объяснения структуры красного смещения. Расширение началось в одно время с Большим взрывом.

Ее состояние иллюстрирует поверхность надутого резинового шарика, на который нанесли точки – внегалактические объекты. Когда такой шарик надувается, все его точки удаляются друг от друга независимо от положения.

По теории Вселенная может либо расширяться бесконечно, либо сжаться.

Барионная асимметрия Вселенной

Наблюдаемое во Вселенной значительное увеличение количества элементарных частиц над всем числом античастиц называется барионной асимметрией. К барионам относят нейтроны, протоны и еще некоторые короткоживущие элементарные частицы.

Данная диспропорция получилась в эру аннигиляции, а именно через три секунды после Большого взрыва. До этого момента количество барионов и антибарионов соответствовало друг другу.

Во время массовой аннигиляции элементарных античастиц и частиц большая их часть объединилась в пары и исчезла, тем самым породив электромагнитное излучение.

Возраст Вселенной на портале Kvant.Space

Ученые современности считают, что нашей Вселенной примерно 16 миллиардов лет. По подсчетам минимальный возраст может быть 12-15 миллиардов лет. Минимум отталкивается от самых старых в нашей Галактике звезд. Реальный ее возраст определить можно, только лишь при помощи закона Хаббла, но реальный не значит точный.

Горизонт видимости

Сфера с равным расстоянию радиусом, которое свет проходит за все время существования Вселенной, называется его горизонтом видимости. Существование горизонта прямо пропорционально связано с расширением и сжатием Вселенной.

Согласно космологической модели Фридмана, расширяться Вселенная начала от сингулярного расстояния примерно 15-20 миллиардов лет назад. За все время свет проходит в расширяющейся Вселенной остаточное расстояние, а именно 109 световых лет.

Из-за этого каждый наблюдатель момента t0 после начала процесса расширения может обозревать лишь небольшую часть, ограниченную сферой, имеющую именно в этот момент радиус I. Те тела и объекты, которые в этот момент находятся за этой границей, в принципе, не наблюдаемы.

Отбиваемый от них свет попросту не успевает добраться до наблюдателя. Это невозможно, даже если свет вышел в момент начала процесса расширения.

Из-за поглощения и рассеивания в ранней Вселенной, с учетом большой плотности, фотоны не могли распространяться в свободном направлении.

Поэтому наблюдатель способен зафиксировать только то излучение, которое появилось в эпоху прозрачной для излучения Вселенной. Данная эпоха определяется временем т»300 000 лет, плотностью вещества r»10-20 г/см3 и моментом рекомбинации водорода.

Из всего вышесказанного следует, что чем ближе в галактике находится источник, тем большим для него будет значение красного смещения.

Большой взрыв

 Момент возникновения Вселенной называют Большим взрывом. Данная концепция стоит на том, что изначально была точка (точка сингулярности), в которой присутствовала вся энергия и все вещество. Основой характеристики принято считать большую плотность материи. Что было до этой сингулярности – неизвестно.

Относительно событий и условий, которые происходили к наступлению момента 5*10-44 секунды (момент окончания 1-го кванта времени), никакой точной информации нет.

В физическом отношении той эры можно лишь предположить, что тогда температура составляла примерно 1,3*1032 градуса с плотностью материи примерно 1096 кг/м3. Эти значения предельны для применения существующих идей.

Они появляются благодаря соотношению гравитационной постоянной, скорости света, постоянных Больцмана и Планка и именуются как «планковские».

Те события, которые связаны с 5*10-44 по 10-36 секунды, отражают модель «инфляционной Вселенной». Момент 10-36 секунды относят к модели «горячей Вселенной».

В период с 1-3 по 100-120 секунд образовались ядра гелия и небольшое количество ядер остальных легких химических элементов. С этого момента в газе начало устанавливаться соотношение – водорода 78%, гелия 22%.

До одного миллиона лет температура во Вселенной начала понижаться до 3000-45000 К, началась эра рекомбинации. Прежде свободные электроны начали объединяться с легкими протонами и атомными ядрами. Начали появляться атомы гелия, водорода и малое количество атомов лития.

Стало прозрачным вещество, а излучение, которое наблюдается до сих пор, отсоединилось от него.

Следующий миллиард лет существования Вселенной отметился понижением температуры от 3000-45000 К до показателя в 300 К. Этот период для Вселенной ученые назвали «Темным возрастом» из-за того, что еще не появилось никаких источников электромагнитного излучения.

В этот же период неоднородности смеси первоначальных газов уплотнялись благодаря воздействию гравитационных сил. Смоделировав на компьютере эти процессы, астрономы увидели, что это необратимо приводило к появлению звезд-гигантов, превышающих массу Солнца в миллионы раз.

По причине такой большой массы эти звезды нагревались до немыслимо высоких температур и эволюционировали за период десятков миллионов лет, после чего они взрывались как сверхновые. Нагреваясь до больших температур, поверхности таких звезд создавали сильные потоки ультрафиолетового излучения. Таким образом, наступил период переионизации.

Плазма, которая образовалась в результате таких явлений, начинала сильно рассеивать электромагнитное излучение в его спектральных коротковолновых диапазонах. В некотором смысле Вселенная начала погружаться в густой туман.

Эти огромные звезды стали первыми во Вселенной источниками химических элементов, которые намного тяжелее за литий. Начали формироваться космические объекты 2-го поколения, в которых содержались ядра этих атомов.

Эти звезды начали создаваться из смесей тяжелых атомов. Произошла повторного типа рекомбинация большей части атомов межгалактического и межзвездного газов, что, в свою очередь, привело к новой прозрачности пространства для электромагнитного излучения.

Вселенная стала именно такой, которую мы можем наблюдать сейчас.

Наблюдаемая структура Вселенной на портале Kvant.Space

Наблюдаемая часть пространственно неоднородна. Большинство скоплений галактик и отдельных галактик формируют ее ячеистую или сотовую структуру. Они конструируют стенки ячеек, которые имеют толщину в пару мегапарсек.

Эти ячейки называют «войдами». Они характеризуются большим размером, в десятки мегапарсек, и при этом в них нет вещества с электромагнитным излучением. На долю «войд» припадает около 50% всего объема Вселенной.

    

Источник: http://kvant.space/vidimaya-vselennaya

Ссылка на основную публикацию