Световой год – все о космосе

Что такое световой год и чему он равен? – Сайт для Всезнаек и Почемучек

Световой год - все о космосе

Космические расстояния слабо поддаются измерению в обычных метрах и километрах, поэтому астрономы используют в своей работе другие физические единицы. Одна из них носит название световой год.

Многие любители фантастики хорошо знакомы с этим понятием, поскольку оно часто встречается в фильмах и книгах.

Но не каждый знает, чему равен световой год, а некоторые и вовсе думают, что он аналогичен обычному годовому исчислению времени.

Что такое световой год?

В действительности световой год – это не временная единица, как можно было бы предположить, а единица длины, применяемая в астрономии. Под ней понимают расстояние, преодолеваемое светом за один год.

Обычно ее применяют в астрономических учебниках или научно-популярной фантастике для определения длин в пределах Солнечной системы. Для более точных математических расчетов или измерения расстояний во Вселенной за основу берут другую единицу – парсек.

Появление светового года в астрономии было связано с развитием звездных наук и необходимостью использовать параметры, сопоставимые с масштабами космоса. Понятие ввели спустя несколько лет после первого успешного измерения расстояния от Солнца до звезды 61 Лебедя в 1838 году.

Изначально световым годом называли расстояние, проходимое светом за один тропический год, то есть за отрезок времени, равный полному циклу смены сезонов. Однако с 1984-го за основу стали брать юлианский год (365,25 дня), в результате чего измерения стали более точными.

Как определяется скорость света?

Чтобы рассчитать световой год, исследователям пришлось сначала определить скорость света. Когда-то астрономы полагали, что распространение лучей в космосе происходит мгновенно, но в XVII веке подобное заключение начало вызывать сомнения.

Первые попытки сделать расчеты предпринял Галилео Галлилей, решивший вычислить время, за которое свет преодолевает 8 км. Его исследования не увенчались успехом. Рассчитать примерную величину удалось Джеймсу Бредли в 1728 году, определившему значение скорости в 301 тысячу км/с.

Несмотря на то что Бредли произвел достаточно верные расчеты, определить точную скорость смогли лишь в XX столетии, используя современные лазерные технологии.

Совершенное оборудование позволило сделать расчеты с поправкой на коэффициент преломления лучей, в результате чего эта величина составила 299 792,458 километров в секунду.

Данными цифрами астрономы оперируют по сей день.

В дальнейшем нехитрые вычисления помогли с точностью установить время, которое лучам необходимо на облет орбиты земного шара без воздействия на них гравитационных полей.

Хотя скорость света не сопоставима с земными расстояниями, ее использование при вычислениях объясняется тем, что люди привыкли мыслить «земными» категориями.

Чему равен световой год?

Если принять во внимание, что световая секунда равняется 299 792 458 метров, легко подсчитать, что за минуту свет преодолевает 17 987 547 480 метров. Как правило, эти данные астрофизики применяют для измерения расстояний внутри планетарных систем.

Для изучения небесных тел в масштабах Вселенной гораздо удобнее брать за основу световой год, который равняется 9,460 триллионов километров или 0,306 парсек. Наблюдение за космическими телами является единственным случаем, когда человек может воочию видеть прошлое.

Чтобы свет, испускаемый какой-нибудь далекой звездой, достиг Земли, требуются многие годы. По этой причине, наблюдая за космическими объектами, вы видим их не такими, какими они являются в данный момент, а какими они были в момент излучения света.

Примеры расстояний в световых годах

Благодаря возможности исчислять скорость движения лучей, астрономы сумели вычислить расстояние в световых годах до многих небесных тел.

Так, расстояние от нашей планеты до Луны составляет 1,3 световых секунды, до Проксима Центавра – 4,2 световых года, до туманности Андромеды – 2,5 миллиона световых лет.

Расстояние между Солнцем и центром нашей галактики лучи проходят примерно за 26 тысяч световых лет, а между Солнцем и планетой Плутон – за 5 световых часов.

Источник: http://www.vseznaika.org/kosmos/chto-takoe-svetovoj-god-i-chemu-on-raven/

Световой год

А вы знаете, почему астрономы не применяют световой год для вычисления расстояний к отдаленным объектам в космосе?

Световой год – общие сведения

Световой год – это внесистемная единица измерения расстояний в космическом пространстве. Она повсеместно используется в популярных книгах и учебниках по астрономии. Тем не менее, в профессиональной астрофизике данная цифра используется крайне редко и зачастую для определения расстояний к недалеким объектам в космосе.

Причина этого проста: если определять расстояние в световых годах к дальним объектам во Вселенной, число окажется настолько огромным, что использовать его для физико-математических вычислений будет непрактично и неудобно.

Поэтому вместо светового года в профессиональной астрономии используются такая единица измерения как парсек, которой намного удобнее оперировать при произведении сложных математических расчетов.

Определение термина

Ближайшие к Солнцу звезды

Определение термина «световой год» мы можем найти в любом учебнике астрономии. Световой год – это расстояние, которое луч света проходит за один земной год.

Такое определение может удовлетворить любителя, но специалист по космологии сочтет его неполным.

Он заметит, что световой год – это не просто расстояние, которое свет проходит за год, а расстояние, которое луч света за 365,25 земных дня проходит в вакууме, не испытывая на себе влияние магнитных полей.

Световой год равен 9,46 триллионам километров. Именно такое расстояние луч света проходит за год. Но как астрономы добились такого точного определения лучевого пути? Об этом мы поговорим ниже.

Как определили скорость света

Измерение скорости света

В древние времена считалось, что свет распространяется во Вселенной мгновенно. Однако начиная с семнадцатого века, ученые начали сомневаться в этом. Первым в выше предложенном утверждении усомнился Галилей.

Именно он пробовал определить время, за которое луч света проходит расстояние в 8 км.

Но из-за того, что такое расстояние было ничтожно малым для такой величины, как скорость света, эксперимент закончился неудачей.

Первым серьезным сдвигом в этом вопросе было наблюдение известного датского астронома Олафа Рёмер.

В 1676 году он заметил разницу во времени затмения спутников Юпитера в зависимости от приближения и удаления к ним Земли в космическом пространстве.

Данное наблюдение Рёмер успешно связал с тем фактом, что чем дальше Земля удаляется от Юпитера, тем больше времени требуется свету, отражаемому от них, чтобы пройти расстояние к нашей планете.

Суть данного факта Рёмер уловил точно, но вот вычислить достоверную величину скорости света ему так и не удалось. Его подсчеты были неверны, поскольку в семнадцатом веке он не мог располагать точными данными о расстоянии от Земли к другим планетам Солнечной системы. Эти данные были определены несколько позже.

Дальнейшие сдвиги в исследованиях и определение светового года

Гипотетический фотон, скитающийся от Земли до Луны. Все пропорции соблюдены.

В 1728 году английскому астроному Джеймсу Брэдли, обнаружившему эффект аберрации звезд, удалось первому вычислить примерную скорость света. Он определили ее значение в 301 тыс. км/с. Но это значение было неточным. Более совершенные методы вычисления скорости света были произведены безотносительно к космическим телам – на Земле.

Наблюдения за скоростью света в вакууме при помощи вращающегося колеса и зеркала, были произведены А.Физо и Л. Фуко соответственно. С их помощью физикам удалось приблизиться к реальному значению этой величины.

Точная скорость света

Точную скорость света ученым удалось определить только в прошлом веке.

Основываясь на теории электромагнетизма Максвелла, при помощи современной лазерной техники и вычислений с поправкой на коэффициент преломления лучевого потока в воздухе, ученым удалось вычислить точную величину скорости света 299 792,458 км/с. Этой величиной астрономы пользуются до сих пор.

Дальше определить световой день, месяц и год было уже делом техники. Путем нехитрых вычислений ученые получили цифру 9,46 триллионов километров – именно столько времени потребовалось бы лучу света для того, чтобы облететь длину земной орбиты.

Самые популярные примеры расстояний в световых годах

Дистанция между Землей и Луной

  1. Один световой год равен 63 241,077 астрономическим единицам и 0,306 601 парсеку;
  2. Расстояние от Земли до Луны составляет 4·10−8 световых лет или 380 тыс. км. То есть, лучу света, посланному с Земли, необходимо всего 1,3 секунды, чтобы туда долететь;
  3. Центр галактики Млечный Путь расположен от Солнца на расстоянии 26 тыс. световых лет.;
  4. Солнечному свету требуется примерно 5 часов для того, чтобы достичь Плутона – одного из наиболее отдаленных объектов Солнечной системы;
  5. Вторая после Солнца ближайшая к нам звезда – Проксима Центавра находится на расстоянии 4,2 световых лет от Земли, а ближайшая к нам галактика Андромеда – 2,5 млн. световых лет.

by HyperComments

Источник: http://SpaceGid.com/svetovoy-god.html

Световой год это сколько земных лет? Пожаловаться ▲▼ Световой год – это то расстояние, которое проходит свет за один год. Международный астрономический союз дал свое объяснение световому году – это то расстояние, которое проходит свет в вакууме, без участия гравитации, за юлианский год. Юлианский год равен 365 суткам. Именно эта расшифровка используется в научной литературе. Если брать профессиональную литературу, то тут расстояние рассчитывается в парсеках или кило- и мегапарсеках. Имеются конкретные цифры, которые определили расстояние световых часов, минут, дней и т.д. Световой год равен 9 460 800 000 000 км, месяц — 788 333 млн. км., неделя — 197 083 млн. км., сутки — 26 277 млн. км, час — 1 094 млн. км., минута — около 18 млн. км., секунда — около 300 тыс. км. ! От Земли до Луны свет доходит в среднем за 1,25 с, до Солнца же его луч домчится чуть более, чем за 8 минут. Интересный факт о природе вселенной Звезда Бетельгейзе в созвездии Орион должна взорваться в обозримом будущем (на самом деле — в пределах нескольких веков). Бетельгейзе расположена от нас на расстоянии от 495 до 640 световых лет. Если она взрывается прямо сейчас, то этот взрыв жители Земли увидят лишь через 500-600 лет. А если вы видите взрыв сегодня, то помните, что на самом деле взрыв произошёл примерно во времена Ивана Грозного… Земной год Земным годом считается расстояние, проходимое землей за один год. Если принимать во внимание все расчеты, то один световой год равен 63242 земным годам. Эта цифра относится именно к планете Земля, к другим, например Марсу или Юпитеру, они будут совсем иными. Световой год исчисляет расстояние от одного объекта небесного тела до другого.

Цифры световых и земных лет настолько разные, хотя и означают расстояние. Масштабы Предположим, что современный космический корабль покидает Солнечную систему с третьей космической скоростью (≈ 16,7 км/с). Первый световой год он преодолеет за 18000 лет! 4,36 световых года до ближайшей к нам звездной системы (Альфы Центавра) он преодолеет примерно за 78 тысяч лет! Нашу галактику Млечный Путь, имеющую в поперечнике примерно 100 000 световых лет, он пересечет за 1 млрд. 780 млн. лет. Млечный путь и Наша Галактика. А до ближайшей к нам большой галактики, Туманности Андромеды, космический корабль домчится лишь спустя 36 миллиардов лет… Вот такие пироги. А ведь в теории даже Вселенная возникла всего 16 млрд. лет назад… ВидеоИсточникиhttps://celestial4blog.wordpress.com/2014/08/28/световой-год-и-космические-масштабы/

Световой год – это то расстояние, которое проходит свет за один год. Международный астрономический союз дал свое объяснение световому году – это то расстояние, которое проходит свет в вакууме, без участия гравитации, за юлианский год. Юлианский год равен 365 суткам. Именно эта расшифровка используется в научной литературе.

Если брать профессиональную литературу, то тут расстояние рассчитывается в парсеках или кило- и мегапарсеках.

Имеются конкретные цифры, которые определили расстояние световых часов, минут, дней и т.д.

  • Световой год равен 9 460 800 000 000 км,
  • месяц — 788 333 млн. км.,
  • неделя — 197 083 млн. км.,
  • сутки — 26 277 млн. км,
  • час — 1 094 млн. км.,
  • минута — около 18 млн. км.,
  • секунда — около 300 тыс. км.

Интересный факт о природе вселенной

Звезда Бетельгейзе в созвездии Орион должна взорваться в обозримом будущем (на самом деле — в пределах нескольких веков).

Бетельгейзе расположена от нас на расстоянии от 495 до 640 световых лет.
Если она взрывается прямо сейчас, то этот взрыв жители Земли увидят лишь через 500-600 лет.

А если вы видите взрыв сегодня, то помните, что на самом деле взрыв произошёл примерно во времена Ивана Грозного…

Земной год

Земным годом считается расстояние, проходимое землей за один год. Если принимать во внимание все расчеты, то один световой год равен 63242 земным годам.

Эта цифра относится именно к планете Земля, к другим, например Марсу или Юпитеру, они будут совсем иными. Световой год исчисляет расстояние от одного объекта небесного тела до другого.

Цифры световых и земных лет настолько разные, хотя и означают расстояние.

Масштабы

  • Предположим, что современный космический корабль покидает Солнечную систему с третьей космической скоростью (≈ 16,7 км/с). Первый световой год он преодолеет за 18000 лет!
  • 4,36 световых года до ближайшей к нам звездной системы (Альфы Центавра) он преодолеет примерно за 78 тысяч лет!
  • Нашу галактику Млечный Путь, имеющую в поперечнике примерно 100 000 световых лет, он пересечет за 1 млрд. 780 млн. лет.Млечный путь и Наша Галактика.
  • А до ближайшей к нам большой галактики, Туманности Андромеды, космический корабль домчится лишь спустя 36 миллиардов лет…
  • Вот такие пироги. А ведь в теории даже Вселенная возникла всего 16 млрд. лет назад…

Источник: http://mfina.ru/svetovoj-god-eto-skolko-zemnyx-let

Световой год

25.07.2017 Категория: Образование и наука Подкатегория: Математика Популярность<\p>

Исследуя собственную планету, на протяжении сотен лет люди изобретали все новые и новые системы для измерения отрезков расстояния. В итоге было решено считать универсальной единицей длины один метр, а большой путь измерять в километрах.

Но наступивший двадцатый век поставил перед человечеством новую проблему. Люди начали внимательно изучать космос — и оказалось, что просторы Вселенной необъятны настолько, что километры здесь просто не годятся.

В привычных единицах еще можно выразить расстояние от Земли до Луны или от Земли до Марса.

Но вот если пытаться определить, на сколько километров отстоит от нашей планеты ближайшая звезда, цифра «обрастает» невообразимым количеством знаков после запятой.

Стало очевидно, что для исследования пространств космоса необходима новая единица измерения — и ею стал световой год. За одну секунду свет проходит 300 000 километров.

Световой годэто расстояние, которое свет пройдет ровно за год — и в переводе на более привычную систему счисления это расстояние равняется 9 460 730 472 580, 8 километра.

Понятно, что использовать лаконичное «один световой год» намного удобнее, нежели каждый раз применять в расчетах эту огромную цифру.

Из всех звезд ближе всего к нам находится Проксима Центавра — она удалена «всего лишь» на 4,22 световых года. Конечно, в пересчете на километры цифра получится невообразимо огромной.

Однако все познается в сравнении — если учитывать, что ближайшая галактика под названием Андромеда отстоит от Млечного Пути на целых 2,5 миллиона световых лет, вышеупомянутая звезда и правда начинает казаться очень близкой соседкой.

Кстати, использование световых лет помогает ученым понять, в каких уголках Вселенной имеет смысл искать разумную жизнь, а куда посылать радиосигналы совершенно бесполезно.

Ведь скорость радиосигнала аналогична скорости света — соответственно, приветствие, отправленное в сторону далекой галактики, достигнет цели лишь через миллионы лет.

Ответа разумнее ждать от более близких «соседей» — объектов, гипотетические ответные сигналы которых доберутся до земных аппаратов хотя бы в течение жизни человека.

1 световой год это сколько земных лет?

Широко распространено ошибочное мнение, что световой год является единицей измерения времени. На самом деле, это не так. Термин не имеет никакого отношения к земным годам, никак с ними не соотносится и обозначает исключительно расстояние, которое свет проходит за один земной год.

Поделиться в соцсетях:

Случайная статья

Источник: http://infoogle.ru/svetovoj_god.html

Световой год

Световой год – сколько это земных лет

Световой год – внесистемая единица измерений расстояний в астрономии.

Численно, один световой год равен расстоянию, которое проходит свет за один год.

Если более точно, то световой год – это расстояние, которое проходит свет в вакууме, без влияния гравитационных полей, за один юлианский год (365,25 суток или 31 557 600 стандартных секунд).

В русской литературе световой год обозначается «св. г.», в зарубежной: «ly»

Чему равен один световой год: Световой год в километрах: 9 460 730 472 580,8 км. 9 460 730 472 580 800 метров

63 241,077 астрономической единицы (а. е.)

1 световой год равен 0,306 601 парсека.

Кроме светового года выделяют также доли светового года: световой месяц, световая неделя, световой час, световая минута и световая секунда.

Они редко встречаются, но любопытно будет посмотреть как выражаются различные расстояния в этих единицах:

Расстояния до некоторых объектов в световых годах

Расстояние:
от Земли до Луны 1,3 св. сек.
1 а.е. – от Солнца до Земли 8.32 св. мин. (499 св. сек)
от Солнца до Плутона 5 св. ч.
внешний край Облака Оорта 1,6 св. года
до Проксимы Центавра 4,2 св. года
Центр нашей галактики 26 000 св. лет
до Туманности Андромеды 2,5 млн св. лет
до края наблюдаемой Вселенной 4,57·1010 св. лет

Световой год – довольно удобная единица измерений расстояний в астрономии. Наибольшая скорость, с которой может распространяться информация в нашем мире – скорость света. Поэтому, расстояния, выраженные в световых годах, одновременно показывают, как быстро один космический объект может повлиять на другой.

Например, вы наверное слышали, что звезда Бетельгейзе в созвездии Орион должна взорваться в обозримом будущем (на самом деле – в пределах нескольких веков).

Бетельгейзе расположена от нас на расстоянии от 495 до 640 световых лет. Если она взрывается прямо сейчас, то этот взрыв жители Земли увидят лишь через 500-600 лет.

А если вы видите взрыв сегодня, то помните, что на самом деле взрыв произошёл примерно во времена Ивана Грозного…

Из этого примера наглядно видно, как удобен световой год – он одновременно показывает и расстояние, и время.

Световой год – сколько это земных лет

Сколько земных лет в световом годе? Довольно странный вопрос, но иногда встречается… Световой год – это мера расстояния, как написано выше, а земной год – мера времени. Поэтому, ответом на вопрос, сколько земных лет в одном световом годе, будет – ни одного 🙂



kosmoved.ru  

  или расскажите друзьям:

Источник: http://kosmoved.ru/svetovoy-god.shtml

Топ-10 невероятных фактов о космосе, поражающих воображение

Если бы вы подошли к двум авторитетным астрофизикам и спросили их, например, о природе происхождения чёрных дыр, то стали бы свидетелем начала жарких и продолжительных дебатов.

Дело в том, что учёные действительно верят в то, что они знают почти всё о космосе. Тем не менее, регулярно совершаются новые открытия, застающие простых людей, а иногда – и астрофизиков врасплох.

К вашему вниманию – 10 невероятных фактов о космосе, поражающих воображение и заставляющих пересмотреть своё мировоззрение!

10. Водные бассейны в космосе

Гигантское облако пара, оказавшееся в поле гравитационного притяжения чёрной дыры в глубине Вселенной

В 2011-м году астрономы случайно обнаружили гигантское облако пара, оказавшееся в поле гравитационного притяжения чёрной дыры в глубине Вселенной. Тем самым они нашли самый большой объём воды в истории. Облака, называемые астрономами «резервуары», вмещают в 140 триллионов раз больше жидкости, чем содержится во всех океанах нашей планеты вместе взятых.

Выяснилось, что эти облака ненамного младше самой Вселенной, и это ещё больше заинтересовало учёных. Так, Мэтт Бредфорд из НАСА заявил, что данное открытие является очередным доказательством того факта, что вода существовала во Вселенной даже на самых ранних стадиях её существования.

Так что, если мы когда-нибудь всё же сбежим с Земли или когда запасы воды иссякнут – мы будем знать, где её найти. Осталось только построить гигантский межгалактический насос. Но главная проблема даже не в этом: исполинское водяное облако находится на расстоянии в 10 миллиардов световых лет от нашей планеты.

9. Вам понадобится 225 миллионов лет, чтобы пройти световой год

Длина светового года составляет около 9,5 триллионов километров

Чтобы преодолеть дистанцию, которую свет проходит за 1 год, человеку нужно, не останавливаясь, идти на протяжении более чем 200 миллионов лет! Длина же пути составит около 9,5 триллионов километров. Другими словами, если бы вы начали идти аккурат перед появлением на Земле динозавров – то примерно сейчас добрались бы к финишу.

Джессика Ченг, редактор журнала «Популярная наука», считает, что такое путешествие вызвало бы невиданное количество проблем. Во-первых, вам понадобилось бы почти 12 миллиардов пар обуви. Во-вторых, вы сжигали бы по 45 калорий за каждый пройденный километр, поэтому понадобилось бы неограниченное количество продуктов для пополнения энергии.

Ченг также говорит, что за 225 миллионов лет вы бы ушли не так далеко, как может казаться. В астрономическом смысле 1 световой год – мизерное расстояние.

В конце путешествия вы бы всё равно находились к Солнцу намного ближе, чем к любой другой звезде. Дело в том, что расстояние до ближайшего к нам светила, Проксима Центавра — 4,22 световых года.

То есть, дойти туда можно было бы почти за 1 миллиард лет!

8. Эрос – астероид богатства

Эрос – космическая сокровищница, содержащая несметные богатства

В 1998-м году один из космических аппаратов исследовал приблизившийся к Земле астероид Эрос и передал данные учёным. Последние после анализа полученной информации смогли сделать громкое заявление.

Оказалось, что Эрос – космическая сокровищница, содержащая несметные богатства.

Проанализировав размеры астероида, в НАСА предположили, что если он подобно другим астероидам на 3% состоит из металла, то в нём содержится около 1,8 миллиардов тонн залежей золота и других драгоценных материалов, например, платины.

По словам доктора Дэвида Уайтхауса, научного редактора BBC, Эрос – действительно большое космическое тело, но не крупнейшее. Известны десятки более массивных астероидов.

Уайтхаус также учёл объёмы залежей драгоценных металлов в недрах Эроса и рассчитал, что суммарная стоимость этого космического тела достигает примерно 20 триллионов долларов. Это – больше, чем годовой ВВП Соединённых Штатов Америки.

К сожалению (и в то же время, к счастью), людям не суждено в ближайшее время поживиться этими богатствами. Останавливать астероиды или добывать из них минералы прямо в космосе мы пока не научились.

Поэтому единственный вариант «присвоения» золота и платины Эроса подразумевает его падение на Землю. Да вот только при таком сценарии никто не сумел бы разбогатеть: столкновение оказалось бы фатальным для всего человечества.

7. Учёным известно 1397 астероидов, способных уничтожить жизнь на Земле

Траектория движения 1397 потенциально опасных космических тел просчитана на многие годы вперёд

Пытаясь предотвратить драматические сцены из фильмов типа «Армагеддон», НАСА следит за 1397 космическими телами в нашей Солнечной системе. Столкновение с ними привело бы к концу существования человеческой цивилизации. Можете не сомневаться: любое тело с диаметром более 100 метров, приближающееся к Земле менее чем на 8 миллионов километров, будет вовремя обнаружено специалистами из НАСА.

Учёные моделируют их орбиты на компьютерах и благодаря этому могут предсказать, в какой точке будет находится конкретный астероид в определённый момент времени. Траектория движения 1397 потенциально опасных космических тел просчитана на многие годы вперёд. Тем не менее, угроза столкновения с каким-то из них в обозримом будущем остаётся достаточно высокой.

6. МКС движется по орбите Земли со скоростью 8 км/с

Международная космическая станция вращается вокруг нашей планеты со скоростью, намного превышающей показатели самых быстрых самолётов

По данным НАСА, Международная космическая станция вращается вокруг нашей планеты со скоростью, намного превышающей показатели самых быстрых самолётов. Она достигает примерно 29 тысяч километров в час (8 километров в секунду).

Это позволяет экипажу МКС видеть восход Солнца каждые 92 минуты! Кстати, существуют сайты, на которых вы можете увидеть космическую станцию ​​в действии и отследить её местоположение в режиме реального времени.

5. В космосе больше звёзд, чем слов, когда-либо сказанных людьми

Никто не знает и никогда не узнает реального количества звёзд

По мнению издателей журнала «Scientific American», звёзд во Вселенной намного больше, чем слов, когда-либо сказанных всеми жившими на Земле людьми. Это число настолько огромно, что находится за пределами человеческого понимания.

Например, Никола Уиллет Марс считает, что существует по крайней мере 70000000000000000000000 (70 секстиллионов) звёзд во Вселенной. Он исходил из предположения, что в космосе находится более 100 миллиардов галактик, в каждой из которых – миллиарды звёзд.

То есть, расчётное число – не более чем итог теоретического расчёта.

Единственное, что мы можем сказать, – судить о количестве звёзд во Вселенной  возможно лишь с очень большой степенью погрешности. Никто не знает и никогда не узнает реальной цифры.

4. Луна страдает от лунотрясений

Сейсмометры, размещённые на посадочных площадках миссий «Аполлон» с 1969-го по 1972-й года, передают на Землю много полезной информации

Когда Клайв Нил, профессор геологических наук Университета Нотр-Дам, вместе со своей командой из 15 учёных проанализировал данные с установленных на Луне датчиков, он сделал удивительный вывод: наш спутник является сейсмически активным.

Сейсмометры, размещённые на посадочных площадках миссий «Аполлон» с 1969-го по 1972-й года, передают на Землю много полезной информации. Так, благодаря ей учёные смогли определить, что существует по крайней мере 4 вида лунотрясений:

  • Глубокие лунотрясения, эпицентр которых находится на глубине около 700 километров. Вероятней всего, так на нашем спутнике сказывается притяжение Земли.
  • Незначительные лунотрясения, вызванные ударами метеоритов.
  • Тепловые лунотрясения. Их причиной является расширение и сжатие поверхностного слоя почвы при нагревании лучами солнца до +100°С и выше и последующем её охлаждении. Известно, что «ночь» в некоторых областях Луны длится целых 2 недели, и земля успевает за это время остыть до -120°С.
  • Мелкие лунотрясения. Они происходят чаще всего на глубине 20-30 километров от поверхности Луны.

На самом деле никто не может, не рискуя ошибиться, сказать, чем именно вызываются лунотрясения. Единственное известное их отличие от земных – они длятся намного дольше.

Дело в том, что кора на Луне не настолько сжата гравитацией, поэтому при лунотрясениях поверхность нашего спутника вибрирует, постепенно затухая, очень долго, словно камертон.

На Земле же есть вода и полезные ископаемые, быстро гасящие энергию колебаний. Поразительно, но при лунотрясениях толчки ощущаются до 10 минут!

3. Голубая планета HD189733b

Голубая планета – огромный газовый гигант, орбита которого проходит на очень близком расстоянии к звезде

С помощью телескопа Хаббл учёные смогли обнаружить в далёком космосе лазурно-голубую планету. Ей досталось название HD189733b.

Эта планета – огромный газовый гигант, орбита которого проходит на очень близком расстоянии к звезде. Условия на ней –поистине адские: скорость ветров в атмосфере достигает 7000 километров в час.

А расчётная температура поверхности этого «зверя» — около 1000 градусов по Цельсию!

Планета может внешне выглядеть спокойной и напоминать Землю, но в действительности своим голубоватым оттенком она обязана не безмятежному тропическому океану, а силикатным частицам, рассеивающим синий свет.

Если бы человечество могло путешествовать между звёздами – условия на HD189733b показались бы нам едва ли не самыми агрессивными и неподходящими для жизни.

К сожалению, отправить на эту планету хотя бы спутник мы пока не в состоянии – она находится на расстоянии в 63 световых года от Земли.

2. Земля имеет более одной Луны

Существует ряд астероидов «околоземного» типа, следующих за нашей планетой при вращении вокруг Солнца

На вопрос «Сколько спутников у нашей планеты?» большинство людей, не задумываясь, ответят: «Один». Но это правда лишь отчасти.

В то время как Луна действительно является единственным небесным телом, движущимся по строгой орбите вокруг Земли, существует ряд астероидов «околоземного» типа, следующих за нашей планетой при вращении вокруг Солнца. Их называют «ко-орбитали».

Известно по крайней мере 6 ко-орбиталей, попавших в ловушку гравитационного поля Земли. Но не пытайтесь смотреть в ночное небо, чтобы их рассмотреть: эти космические тела нельзя увидеть невооружённым взглядом.

Конечно, можно согласиться со многими астрономами, предполагающими, что эти ко- орбитали не являются спутниками в традиционном понимании этого слова. Тем не менее, они имеют значимые отличия от других астероидов.

Как и Земля, они вращаются вокруг Солнца примерно за 1 год, а иногда даже подходят к нашей планете достаточно близко, чтобы оказывать незначительное гравитационное воздействие.

То есть, их всё же можно с набольшими оговорками считать нашими спутниками.

Роберт Джедик, астроном из Гавайского университета, уверяет, что в любой момент времени есть 1 или 2 астероида диаметром более 1 метра, вращающихся на околоземной орбите. Может быть, нам всё же стоит пересмотреть своё мировоззрение и признать, что у нашей планеты не одна Луна, а несколько. Причём некоторые из них приближаются к нам и отдаляются в разные периоды года!

1. В нашей Солнечной системе меньше 9 планет

Международный астрономический союз решил назвать критерии, по которым можно было бы судить, является ли то или иное космическое тело планетой

Забудьте о том, что вам рассказывали в школе на уроках астрономии. На самом деле, в нашей Солнечной системе планет не 9, а только 8. Несколько лет назад Международный астрономический союз решил назвать критерии, по которым можно было бы судить, является ли то или иное космическое тело планетой:

  • Подобный объект должен иметь достаточно большую массу и круглую форму (но не обязательно идеально сферическую).
  • Поблизости не должно быть других планет.
  • Тело должно вращаться вокруг Солнца по неизменной орбите.

Первым космическим объектом, который разжаловали из почётного звания и переименовали в «маленькую планету», стал Плутон. Произошло это в 2006-м году.

Отметим, что споры по поводу того, можно ли называть Плутон планетой, не утихали много лет подряд. Ведь он, по сути, является огромной ледяной скалой, не сильно отличающейся от астероидов.

Таким образом, «официальных» планет в нашей Солнечной системе осталось 8.

Космические глубины скрывают бесчисленное количество тайн, многие из которых человечеству лишь предстоит разгадать. Вне сомнений, впереди нас ждут потрясающие открытия, которые перевернут современные представления о Вселенной с ног на голову и немного приблизят нас к пониманию секретов мироздания.

  • Виктория
  • Распечатать

Источник: https://www.publy.ru/post/16667

40 световых лет — это никогда

22 февраля 2017 года NASA сообщило, что у одиночной звезды TRAPPIST-1 найдены 7 экзопланет. Три из них находятся в том диапазоне расстояний от звезды, в котором планета может иметь жидкую воду, а вода — это ключевой условие для жизни. Сообщается также, что данная звездная система находится на расстоянии в 40 световых лет от Земли.

Это сообщение наделало много шума в СМИ, кое-кому даже показалось, что человечество находится в шаге от строительства новых поселений у новой звезды, но это не так. Но 40 световых лет — это много, это МНОГО, это слишком много километров, то есть это чудовищно колоссальное расстояние!

Из курса физики известна третья космическая скорость — это такая скорость, которую должно иметь тело у поверхности Земли, чтобы выйти за пределы Солнечной системы. Значение этой скорости равно 16,65 км/сек.

Обычные орбитальные космические корабли стартуют со скоростью 7,9 км/сек, и вращаются вокруг Земли.

В принципе, скорость в 16-20 км/сек, является вполне доступной современным земным технологиям, но не более!

Человечество еще не научилось разгонять космические корабли быстрее, чем 20 км/сек.

Рассчитаем, сколько лет понадобиться звездолету, летящему со скоростью в 20 км/сек, чтобы преодолеть 40 световых лет и достичь звезды TRAPPIST-1.
Один световой год — это расстояние, которое проходит луч света в вакууме, а скорость света равна примерно 300 тыс. км/сек.

Космический корабль, сделанный руками людей, летит со скоростью в 20 км/сек, то есть в 15000 раз медленнее скорости света. 40 световых лет такой корабль преодолеет за время равное 40*15000=600000 лет!

Земной корабль (при современном уровне технологии) долетит до звезды TRAPPIST-1 примерно за 600 тыс. лет! Человек разумный существует на Земле (по мнению ученых) всего 35-40 тыс. лет, а тут целых 600 тыс. лет!

В ближайшее время технологии не позволят человеку достичь звезды TRAPPIST-1. Даже перспективные двигатели (ионные, фотонные, космические паруса и т.д.

), которых нет в земной реальности, оценочно, могут разогнать корабль до скорости в 10000 км/сек, а значит, время полета до системы TRAPPIST-1 сократится до 120 лет.

Это уже более-менее приемлемое время для полета с помощью анабиоза или для нескольких поколений переселенцев, но на сегодняшний день все эти двигатели — фантастика.

Даже ближайшие звезды пока еще слишком далеки от людей, слишком далеки, не говоря уже о звездах нашей Галактики или других галактиках.

Поперечник нашей галактики Млечный Путь составляет примерно 100 тыс. световых лет, то есть путь из конца в конец для современного земного корабля составит 1,5 млрд. лет! Наука предполагает, что нашей Земле 4,5 млрд. лет, а многоклеточной жизни примерно 2 млрд. лет. Расстояние до ближайшей к нам галактики — Туманности Андромеды — 2,5 млн. световых лет от Земли — какие чудовищные расстояния!

Как видно, из всех ныне живущих людей никто и никогда не ступит ногой на землю планеты у другой звезды.

Источник: http://www.segodnia.ru/content/185101

Прошло много лет, но теперь мы знаем размеры Вселенной

Масштабы космоса сложно представить и еще сложнее — точно определить. Но благодаря гениальным догадками физиков, мы думаем, что хорошо представляем, насколько велик космос.

«Давайте прогуляемся по Вселенной», — такое приглашение сделал американский астроном Харлоу Шепли перед аудиторией в Вашингтоне, округ Колумбия, в 1920 году.

Он принимал участие в так называемой Большой Дискуссии, посвященной масштабам Вселенной, вместе с коллегой Хибером Кертисом.

Шепли полагал, что наша галактика Млечный Путь была 300 000 световых лет в поперечнике. Это в три раза больше, чем думают сейчас, но для того времени измерения были вполне неплохие. В частности, он рассчитал в целом правильные пропорциональные расстояния в пределах Млечного Пути — положение нашего Солнца относительно центра галактики, к примеру.

В начале 20 века, впрочем, 300 000 световых лет казались многим современникам Шепли каким-то абсурдно большим числом. А мысль о том, что другие спиральные галактики вроде Млечного Пути — которые были видны в телескопы — были такими же большими, вообще не принимали всерьез.

Да и сам Шепли считал, что Млечный Путь должен быть особенным. «Даже если спирали представлены звездами, они не сравнимы по размеру с нашей звездной системой», говорил он своим слушателям.

Кертис не согласился. Он думал, и это было правильно, что во Вселенной было много других галактик, разбросанных подобно нашей. Но его отправной точкой было допущение, что Млечный Путь был намного меньше, чем подсчитал Шепли. По расчетам Кертиса, Млечный Путь был всего 30 000 световых лет в диаметре — или в три раза меньше, чем показывают современные расчеты.

В три раза больше, в три раза меньше — речь идет о таких огромных расстояниях, что вполне понятно, что астрономы, размышлявшие на эту тему сто лет назад, могли так ошибаться.

Сегодня мы достаточно уверены, что Млечный Путь где-то между 100 000 и 150 000 световым годами в поперечнике. Наблюдаемая Вселенная, конечно, намнооооооого больше. Полагают, что ее диаметр составляет 93 миллиарда световых лет. Но с чего такая уверенность? Как вообще можно измерить что-то такое с Земли?

С тех пор, как Коперник заявил, что Земля не является центром Солнечной системы, мы всегда с трудом переписывали наши представления о том, чем является Вселенной — и особенно насколько большой она может быть. Даже сегодня, как мы увидим, мы собираем новые свидетельства касательно того, что целая Вселенная может быть гораздо больше, чем мы думали недавно.

Кейтлин Кейси, астроном из Университета штата Техас в Остине, изучает Вселенную. Она говорит, что астрономы разработали набор хитроумных инструментов и систем измерения, чтобы подсчитать не только расстояние от Земли до других тел в нашей Солнечной системе, но и пропасти между галактиками и даже до самого конца наблюдаемой Вселенной.

Шаги к измерению всего этого проходят через шкалу расстояний в астрономии. Первая ступень этой шкалы довольно проста и в наши дни полагается на современные технологии.

Большие радиотелескопы вроде Аресибо в Пуэрто-Рико могут делать эту работу — но они также способны на большее. Аресибо, например, может обнаруживать астероиды, летающие вокруг нашей Солнечной системы и даже создавать их изображения, в зависимости от того, как радиоволны отражаются от поверхности астероида.

Но использовать радиоволны для измерения расстояний за пределами нашей Солнечной системы непрактично. Следующая ступень в этой космической шкале — это измерение параллакса. Мы делаем это постоянно, даже не осознавая. Люди, как и многие животные, интуитивно понимают расстояние между собой и объектами, благодаря тому, что у нас есть два глаза.

Если вы держите объект перед собой — руку, например — и смотрите на него одним открытым глазом, а затем переключаетесь на другой глаз, вы видите, как ваша рука слегка сдвигается. Это называется параллаксом. Разницу между этими двумя наблюдениями можно использовать для определения расстояния до объекта.

Наш мозг делает это естественным образом с информацией из обоих глаз, и астрономы делают то же самое с ближайшими звездами, только используют другие органы чувств: телескопы.

Представьте, что в космосе плавает два глаза, по обе стороны от нашего Солнца. Благодаря орбите Земли, у нас имеются эти глаза, и мы можем наблюдать смещение звезд относительно объектов на фоне, используя этот метод.

Тем не менее есть порог, за которым объекты уже так далеки — около 100 световых лет — что наблюдаемое смещение слишком малое, чтобы обеспечить полезный расчет. На этом расстоянии мы все еще будем далеки от края нашей собственной галактики.

Следующий шаг — установка по главной последовательности. Он опирается на наше знание того, как звезды определенного размера — известные как звезды главной последовательности — развиваются с течением времени.

Во-первых, они меняют цвет, с возрастом становясь краснее. Точно измеряя их цвет и яркость, а после сравнивая это с тем, что известно о расстоянии до звезд главной последовательности, которые измеряются методом тригонометрического параллакса, мы можем оценить положение этих, более далеких звезд.

Принцип, который лежит в основе этих вычислений, заключается в том, что звезды одной массы и возраста будут казаться нам одинаково яркими, если бы находились на одном расстоянии от нас. Но поскольку зачастую это не так, мы можем использовать разницу в измерениях, чтобы выяснить, как далеки они на самом деле.

Звезды главной последовательности, которые используются для этого анализа, считаются одним из типов «стандартных свечей» — тел, величину которых (или яркость) мы можем посчитать математически. Эти свечи разбросаны по всему космосу и предсказуемо освещают Вселенную. Но звезды главной последовательности не единственные примеры.

Это понимание того, как яркость связана с расстоянием, позволяет нам понимать расстояния до еще более далеких объектов — вроде звезд в других галактиках. Подход как с основной последовательностью уже не будет работать, потому что свет этих звезд — которые в миллионах световых лет от нас, если не больше — трудно точно проанализировать.

Но в 1908 году ученый по имени Генриетта Суон Ливитт из Гарварда осуществила фантастическое открытие, которое помогло нам измерить и эти колоссальные расстояния. Суон Ливитт поняла, что существует особый класс звезд — цефеиды.

Другими словами, более яркая звезда класса цефеид будет «пульсировать» медленнее (в течение многих дней), чем более тусклая цефеида. Поскольку астрономы могут весьма просто измерить пульс цефеиды, они могут сказать, насколько яркая звезда. Затем, наблюдая за тем, насколько яркой она кажется нам, они могут рассчитать расстояние до нее.

Этот принцип аналогичен подходу с главной последовательностью в том смысле, что ключевой является яркость. Однако важно то, что расстояние можно измерить различными способами. И чем больше способов измерения расстояний у нас есть, тем лучше мы можем понять истинный масштаб наших космических задворок.

Именно открытие таких звезд в нашей собственной галактике убедило Харлоу Шепли в ее большом размере.

В начале 1920-х годов Эдвин Хаббл обнаружил цефеиды в ближайшей к нам галактике Андромеды и заключил, что она всего в миллионе световых лет от нас.

Сегодня, по нашим лучшим оценкам, эта галактика в 2,54 миллиона световых лет от нас. Стало быть, Хаббл ошибался. Но это нисколько не умаляет его заслуг. Потому что мы до сих пор пытаемся рассчитать расстояние до Андромеды. 2,54 миллиона лет — это число, по сути, является результатом относительно недавних расчетов.

Даже сейчас масштаб Вселенной сложно представить. Мы можем его оценивать, и очень хорошо, но, по правде говоря, точно вычислить расстояния между галактиками очень трудно. Вселенная невероятно большая. И нашей галактикой не ограничена.

Хаббл также измерил яркость взрывающихся белых карликов — сверхновых типа 1А. Их можно увидеть в довольно далеких галактиках, за миллиарды световых лет от нас. Поскольку яркость эти вычислений можно рассчитать, мы можем определить, насколько они далеки, как мы это сделали с цефеидами. Сверхновые типа 1А и цефеиды — примеры того, что астрономы называют стандартными свечами.

Есть еще одна особенность Вселенной, которая может помочь нам измерить действительно большие расстояния. Это красное смещение.

Если сирена кареты скорой помощи или полицейского автомобиля когда-нибудь проносилась мимо вас, вы знакомы с эффектом Доплера. Когда скорая приближается, сирена звучит пронзительнее, а когда удаляется, сирена снова стихает.

То же самое происходит с волнами света, только в мелких масштабах. Мы можем зафиксировать это изменение, анализируя спектр света удаленных тел. В этом спектре будут темные линии, поскольку отдельные цвета поглощаются элементами в источнике света и вокруг него — поверхности звезд, например.

Чем дальше объекты от нас, тем дальше в сторону красного конца спектра будут смещаться эти линии. И это не только потому что объекты далеки от нас, а потому что они еще и удаляются от нас с течением времени, благодаря расширению Вселенной. И наблюдение красного смещения света далеких галактик, собственно, предоставляет нам доказательство того, что Вселенная действительно расширяется.

Картик Шет, ученый NASA, предлагает такую аналогию: разместить точки на поверхности воздушного шара — каждая из которых будет представлять галактику — и затем надуть шар.

По мере расширения резины, расстояние между точками на поверхности увеличивается. «Пока Вселенная расширяется, каждая галактика удаляется от других.

Обычно волна должна быть такой же частоты, на которой она была излучена, но теперь пространство-время само растянулось, поэтому волна стала казаться длиннее».

Чем быстрее галактика удаляется от нас, тем дальше она должна быть — и тем больше красного смещения мы сможем обнаружить в свете, получив его на Земле. Опять же, именно Эдвин Хаббл открыл пропорциональную связь между его цефеидами в далеких галактиках и тем, сколько света из этих галактик прошло через красное смещение.

А теперь ключ нашей головоломки. Самое сильное красное смещение света, которое мы можем обнаружить в наблюдаемой Вселенной, показывает, что свет шел к нам из галактик, которым 13,8 миллиарда лет.

Поскольку это самый старый свет, который мы обнаружили, он также позволяет нам измерить возраст самой Вселенной.

Но в течение последних 13,8 миллиарда лет Вселенная постоянно расширялась — и поначалу делала это очень быстро. Принимая это во внимание, астрономы пришли к выводу, что галактики на краю наблюдаемой Вселенной, свет которых шел к нам 13,8 миллиарда лет, должны быть в 46,5 миллиардах световых лет от нас.

Это радиус наблюдаемой Вселенной. Умножьте его и получите диаметр: 93 миллиарда световых лет. Это число опирается на множество других измерений и научных изысканий, и это кульминация столетий работы. Но как говорит Кейси, оценка немного грубовата.

С одной стороны, учитывая сложность некоторых самых старых галактик, что мы можем обнаружить, непонятно, как они смогли образоваться так быстро после Большого Взрыва. Возможно, некоторые наши расчеты неправильны.

Все становится еще сложнее, когда мы пытаемся задумываться о Вселенной, которая лежит за пределами наблюдаемого. О «целой» Вселенной. В зависимости от того, какая теория больше вам по душе, целая Вселенная может быть конечна или бесконечна.

Недавно Мигран Варданян и его коллеги из Оксфордского университета в Великобритании проанализировали известные данные об объектах в наблюдаемой Вселенной, чтобы увидеть, что можно извлечь из этих знаний о форме целой Вселенной. Результаты привели к новым оценкам: целая Вселенная в 250 раз больше наблюдаемой.

Мы никогда не сможем увидеть эти далекие области. Но наблюдаемой Вселенной хватит большинству из нас. Для ученых вроде Кейси и Шета она бесконечно удивительна.

Однажды мы заберемся так далеко во Вселенную, что и представить трудно. Пока что мы можем только смотреть. Но и просто смотреть можно бесконечно далеко.

Источник: https://hi-news.ru/space/proshlo-mnogo-let-no-teper-my-znaem-razmery-vselennoj.html

Ссылка на основную публикацию